Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation si...Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation situation,divergence and vertical velocity field,and the vertical profile of temperature and humidity are synthesized and analyzed.The basic characteristics of the circulation and physical field of sea fog under low pressure control(L type sea fog)are obtained,and the results are compared with the sea fog under the control of high pressure(H type sea fog):a)L type sea fogs potential height anomaly disturbance is mainly manifested in the low layer,and its average value is-65.66 gpm,gradually weakening upward;b)L type sea fogs inversion structure is weaker than H type sea fogs when it occurs,the fog layer is thicker and the high relative humidity level is high over the fog layer,while the H type sea fogs fog layer has a relatively obvious dry layer;c)L sea fog has three layers of structure at the vertical direction.The first layer 1000-950 hPa is convergence accompanied by weak rise and subsidence,the second layer 950-850 hPa is divergence accompanied by weak subsidence,and the third layer 850 to 500hPa is gradually strengthened.While there are two layer structures of the H type sea fog.1000 hPa is divergence accompanied by weak rising and sinking movement,950-500 hPa is a uniform subsidence movement.d)Probability density statistical analysis further quantified the vertical movement of L and H type sea fog and the distribution of relative humidity in each layer.These conclusions provide an important reference for forecasting the sea fog in the northwest of the Yellow Sea under the condition of low pressure circulation in summer.展开更多
We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Con...We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.展开更多
The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test...The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test methods.The results show that martensite appears in low carbon steel at 1-5GPa GPa and 950°C for 15 minutes treatment,high pressure heat treatment can improve the hardness and compressive properties of the steel,the yield strength of the steel increases with increasing pressure,and its compressive properties are better than that treated under normal pressure quenching.展开更多
Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics i...Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics in hydraulic cylinder were described.The calculation of safety factor,fatigue life,piston chamber pressure,rod chamber pressure and the change of velocity of piston with flow time after the beginning of hydraulic cylinder were incorporated.Numerical analysis was performed using the commercial CFD code,ANSYS with unsteady,dynamic mesh model,two-way FSI(fluid-structure interaction)method and k-εturbulent model.The internal pressure in hydraulic cylinder through stress analysis show higher than those of the yield strength.展开更多
A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD ...A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD patterns indicate that the structures of high oxygen pressure RE_2CuO_4 (only for RE=Sm, Eu) samples are pure T′ phase, but when RE= Gd, Tb, Dy, Ho, Er, Tm, the structures turn to disorder. The magnetic anomalies that occurred at T^30 K are observed in high oxygen pressure RE_2CuO_4. It is found that the transition temperatures of weak ferromagnetic anomalies are nearly independent of the rare-earth components. Thus, the O-doping plays an important role in anomalous magnetic properties of RE_2CuO_(4+δ). The magnetic anomalies in RE_2CuO_4 are considered to be due to ferromagnetic clusters formed in the Cu-O plane after the oxygen doping.展开更多
In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrast...In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT- Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy.展开更多
The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with se...The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with semiconducting transport properties, which is different from the semimetallic CaB6 single crystals. The temperaturedependent resistance measurement results show that before the structural phase transition at 12.3 GPa the high pressure first induces the metallization at 6.5 GPa for CAB6. Moreover, the phase diagram for CaB6 is drawn based on the investigated electric conducting properties and at least three different conducting phases are found even at moderate high pressure and low temperature, indicating that the electric nature of CaB6 is very sensitive to the environment.展开更多
The retrofit on flow path of low pressure cylinder of domestic made 200 MW steam turbine undertaken by Longwei Power Generation Technology Service Company Ltd by using Westinghouse technology was successful for the fi...The retrofit on flow path of low pressure cylinder of domestic made 200 MW steam turbine undertaken by Longwei Power Generation Technology Service Company Ltd by using Westinghouse technology was successful for the first time on the No. 5 unit of Zhenhai Prover Plant. Zhejiang Province. The test carried out by the Xi’an Thermal Power Research Institute showed that the thermal efficiency after the retrofit展开更多
Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating ...Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating the gas to very high speed around 7 km/s. Various structures of the arc generator and gas expansion nozzle were examined. Results show that bypass exhausting of the boundary layer before it enters the nozzle divergent section can greatly increase flow speed of the jet, thus it might be possible to use nitrogen as a working gas in high speed gas dynamic test facilities.展开更多
Advanced high strength steels are the group of material with high strength and good formability, because high strength lesser gauge thickness can be used without compromising the function of component. In terms of eco...Advanced high strength steels are the group of material with high strength and good formability, because high strength lesser gauge thickness can be used without compromising the function of component. In terms of economic forming process, hydroforming is the manufacturing option which uses a fluid medium to form a component by using high internal pressure. This process gained steep interest in the automotive and aerospace industries because of its many advantages such as part consolidation, good quality of the formed part etc. The main advantage is that the uniform pressure can be transferred to whole projected part at the same time. Low pressure tube hydroforming considered an inexpensive option for forming these advanced high strength steel. This paper investigates the pressurization system used during the low pressure tube hydroforming cycle. It is observed that the usage of ramp pressure cycle during forming the part from low pressure tube hydroforming results in lesser die holding force. Also, the stress, strain and thickness distribution of the part during low pressure tube hydroforming are critically analysed.展开更多
Based on the principles of massive support and lateral support, a novel double-layered split die(DLSD) for high-pressure apparatus was designed to achieve a higher pressure-bearing capacity and larger sample cavity. T...Based on the principles of massive support and lateral support, a novel double-layered split die(DLSD) for high-pressure apparatus was designed to achieve a higher pressure-bearing capacity and larger sample cavity. The stress distributions of the DLSDs with different numbers of divided blocks were investigated by the finite element method and compared with the stress distributions of the conventional belt-type die(BTD). The results show that the cylinders and first-layer supporting rings of the DLSDs have dramatically smaller stresses than those of the BTD. In addition, increasing the number of divided blocks from 4 to 10 gradually increases the stress of the cylinder but has minimal influence on the stress of the supporting rings. The pressure-bearing capacities of the DLSDs with different numbers of divided blocks, especially with fewer blocks, are all remarkably higher than the pressure-bearing capacity of the BTD. The contrast experiments were also carried out to verify the simulated results. It is concluded that the pressure-bearing capacities of the DLSDs with 4 and 8 divided blocks are 1.58 and 1.45 times greater than that of the BTD. This work is rewarding for the commercial synthesis of high-quality, large-sized superhard materials using a double-layered split high-pressure die.展开更多
Ying-Qiong Basin is a typical high-temperature and overpressure basin, which is the main battlefield of oil and gas exploration in South China Sea and has made great breakthroughs in recent years. During drilling proc...Ying-Qiong Basin is a typical high-temperature and overpressure basin, which is the main battlefield of oil and gas exploration in South China Sea and has made great breakthroughs in recent years. During drilling process in high pressure, the relationship between the deep and the pressure is directly related to the drilling safety and costs. In order to improve prediction accuracy, the VSP operation is carried out through the midway, and three points have been obtained: 1) The VSP has a higher accuracy of the interface depth in certain depth range of the drill bit. 2) When the low-frequency trend prediction is accurate before the drill bit, interval velocity of the VSP inversion is consistent with the formation velocity. 3) The VSP pressure forecast is based on the inversion layer velocity and under-compaction pressure. If the velocity prediction is not accurate, the pressure forecast must be erroneous. If the pressure has other sources, the formation pressure is not accurate even if the inversion velocity is accurate. The application scope and exploration effect of midway VSP operation are summarized and applied to Ledong 10-1 block in Yinggehai basin, which realize the breakthrough in the field of high temperature overpressure and provide the basis for other similar exploration areas to do VSP operation.展开更多
The propagation of the high-power microwave(HPM) with a frequency of 6 GHz in the lowpressure argon plasma was studied by the method of fluid approximation.The two-dimensional transmission model was built based on t...The propagation of the high-power microwave(HPM) with a frequency of 6 GHz in the lowpressure argon plasma was studied by the method of fluid approximation.The two-dimensional transmission model was built based on the wave equation,the electron drift-diffusion equations and the heavy species transport equations,which were solved by means of COMSOL Multiphysics software.The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma.The attenuation of the transmitted wave increased nonlinearly with the electron density.Specifically,the growth of the attenuation slowed down as the electron density increased uniformly.In addition,the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.展开更多
The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer...The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.展开更多
To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed i...To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed in this paper. And then numerical calculations were carried out. The effects on downstream flow field were studied and analyzed in detail. Results show that, at the middle of stator blades, although the increasing Maeh number causes the increase of shock-wave strength and friction, the middle flow field of downstream rotors is improved obviously. It is an important change in transonic condition. This causes the loss of the rotor' s middle part decreased greatly. Correspondingly, efficiency of the whole transonic stage can be increased.展开更多
目的:通过Meta分析综合定量评价低容量高强度间歇训练对预防肥胖或超重人群心血管疾病的效果,进一步验证低容量高强度间歇训练在肥胖等特殊人群中应用的可行性。方法:在中国知网、PubMed、Web of Science、Cochrane Library和EBSCO-SPO...目的:通过Meta分析综合定量评价低容量高强度间歇训练对预防肥胖或超重人群心血管疾病的效果,进一步验证低容量高强度间歇训练在肥胖等特殊人群中应用的可行性。方法:在中国知网、PubMed、Web of Science、Cochrane Library和EBSCO-SPORTD运动科学全文数据库检索关于低容量高强度间歇训练相关研究的随机对照试验文献,检索时限为各数据库建库至2024年2月。由2名研究人员对所纳入的研究进行筛选、质量评价和数据提取,采用RevMan 5.4和Stata 17.0软件对结局指标进行Meta分析,包括合并效应量、亚组分析、Leave-One-Out敏感性分析以及发表Egger检验和绘制漏斗图。该方案已在国际系统综述前瞻性注册中心注册(CRD42024534409)。结果:①最终筛选纳入符合要求的13项随机对照试验,共包含349例受试者,纳入文献整体质量较高。②低容量高强度间歇训练干预对心肺适能(SMD=-0.65,95%CI:-0.87至-0.43,P<0.05)、收缩压(SMD=0.38,95%CI:0.11-0.65,P<0.05)、舒张压(SMD=0.42,95%CI:0.15-0.68,P<0.05)和体脂百分比(SMD=0.25,95%CI:0.02-0.49,P<0.05)4项指标具有改善效果。③低容量高强度间歇训练与中等强度持续训练相比在改善超重或肥胖人群心肺适能、收缩压、舒张压、体脂百分比、标准体质量、体质量指数、高密度脂蛋白、低密度脂蛋白和总胆固醇指标方面干预效果相似(P>0.05),但在改善三酰甘油效果方面中等强度持续训练优于低容量高强度间歇训练(SMD=-0.30,95%CI:-0.57至-0.02,P<0.05)。④亚组分析结果进一步显示,低容量高强度间歇训练和中等强度持续训练干预对各项指标的改善效果相似。结论:当前证据表明,低容量高强度间歇训练可以有效提升超重或肥胖人群的心肺适应能力以及促进减脂和血压调控,且改善效果与中等强度持续训练相似。短时间的低容量高强度间歇训练相比于长时间的中等强度持续训练更具有时间效益。建议未来通过更多研究确定适用于超重或肥胖人群最佳的低容量高强度间歇训练运动处方。展开更多
基金supported by National Natural Science Foundation of China(No.41576108 and No.41605006)Natural Science Foundation project of Shandong Province(No.ZR2016DB26).
文摘Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation situation,divergence and vertical velocity field,and the vertical profile of temperature and humidity are synthesized and analyzed.The basic characteristics of the circulation and physical field of sea fog under low pressure control(L type sea fog)are obtained,and the results are compared with the sea fog under the control of high pressure(H type sea fog):a)L type sea fogs potential height anomaly disturbance is mainly manifested in the low layer,and its average value is-65.66 gpm,gradually weakening upward;b)L type sea fogs inversion structure is weaker than H type sea fogs when it occurs,the fog layer is thicker and the high relative humidity level is high over the fog layer,while the H type sea fogs fog layer has a relatively obvious dry layer;c)L sea fog has three layers of structure at the vertical direction.The first layer 1000-950 hPa is convergence accompanied by weak rise and subsidence,the second layer 950-850 hPa is divergence accompanied by weak subsidence,and the third layer 850 to 500hPa is gradually strengthened.While there are two layer structures of the H type sea fog.1000 hPa is divergence accompanied by weak rising and sinking movement,950-500 hPa is a uniform subsidence movement.d)Probability density statistical analysis further quantified the vertical movement of L and H type sea fog and the distribution of relative humidity in each layer.These conclusions provide an important reference for forecasting the sea fog in the northwest of the Yellow Sea under the condition of low pressure circulation in summer.
文摘We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.
文摘The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test methods.The results show that martensite appears in low carbon steel at 1-5GPa GPa and 950°C for 15 minutes treatment,high pressure heat treatment can improve the hardness and compressive properties of the steel,the yield strength of the steel increases with increasing pressure,and its compressive properties are better than that treated under normal pressure quenching.
基金supported by the International Cooperation on Technology Development Program of the Korea Institute for Advancement of Technology ( KIAT),Republic of Korea ( N0000902)
文摘Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics in hydraulic cylinder were described.The calculation of safety factor,fatigue life,piston chamber pressure,rod chamber pressure and the change of velocity of piston with flow time after the beginning of hydraulic cylinder were incorporated.Numerical analysis was performed using the commercial CFD code,ANSYS with unsteady,dynamic mesh model,two-way FSI(fluid-structure interaction)method and k-εturbulent model.The internal pressure in hydraulic cylinder through stress analysis show higher than those of the yield strength.
文摘A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD patterns indicate that the structures of high oxygen pressure RE_2CuO_4 (only for RE=Sm, Eu) samples are pure T′ phase, but when RE= Gd, Tb, Dy, Ho, Er, Tm, the structures turn to disorder. The magnetic anomalies that occurred at T^30 K are observed in high oxygen pressure RE_2CuO_4. It is found that the transition temperatures of weak ferromagnetic anomalies are nearly independent of the rare-earth components. Thus, the O-doping plays an important role in anomalous magnetic properties of RE_2CuO_(4+δ). The magnetic anomalies in RE_2CuO_4 are considered to be due to ferromagnetic clusters formed in the Cu-O plane after the oxygen doping.
基金supported by the National Natural Science Foundation of China(Grant No.61304197)the Scientific and Technological Talents of Chongqing,China(Grant No.cstc2014kjrc-qnrc30002)+2 种基金the Key Project of Application and Development of Chongqing,China(Grant No.cstc2014yykf B40001)the Natural Science Funds of Chongqing,China(Grant No.cstc2014jcyj A60003)the Doctoral Start-up Funds of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-26)
文摘In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT- Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy.
基金Supported by the National Basic Research Program of China under Grant No 2011CB808204the National Natural Science Foundation of China under Grant Nos 11374121 and 11404133
文摘The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with semiconducting transport properties, which is different from the semimetallic CaB6 single crystals. The temperaturedependent resistance measurement results show that before the structural phase transition at 12.3 GPa the high pressure first induces the metallization at 6.5 GPa for CAB6. Moreover, the phase diagram for CaB6 is drawn based on the investigated electric conducting properties and at least three different conducting phases are found even at moderate high pressure and low temperature, indicating that the electric nature of CaB6 is very sensitive to the environment.
文摘The retrofit on flow path of low pressure cylinder of domestic made 200 MW steam turbine undertaken by Longwei Power Generation Technology Service Company Ltd by using Westinghouse technology was successful for the first time on the No. 5 unit of Zhenhai Prover Plant. Zhejiang Province. The test carried out by the Xi’an Thermal Power Research Institute showed that the thermal efficiency after the retrofit
基金supported by the National Natural Science Foundation of China(Nos.11575273 and 11475239)
文摘Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating the gas to very high speed around 7 km/s. Various structures of the arc generator and gas expansion nozzle were examined. Results show that bypass exhausting of the boundary layer before it enters the nozzle divergent section can greatly increase flow speed of the jet, thus it might be possible to use nitrogen as a working gas in high speed gas dynamic test facilities.
文摘Advanced high strength steels are the group of material with high strength and good formability, because high strength lesser gauge thickness can be used without compromising the function of component. In terms of economic forming process, hydroforming is the manufacturing option which uses a fluid medium to form a component by using high internal pressure. This process gained steep interest in the automotive and aerospace industries because of its many advantages such as part consolidation, good quality of the formed part etc. The main advantage is that the uniform pressure can be transferred to whole projected part at the same time. Low pressure tube hydroforming considered an inexpensive option for forming these advanced high strength steel. This paper investigates the pressurization system used during the low pressure tube hydroforming cycle. It is observed that the usage of ramp pressure cycle during forming the part from low pressure tube hydroforming results in lesser die holding force. Also, the stress, strain and thickness distribution of the part during low pressure tube hydroforming are critically analysed.
基金Changchun Ruiguang Science & Technology Co., Ltd. for technical assistance and financial support
文摘Based on the principles of massive support and lateral support, a novel double-layered split die(DLSD) for high-pressure apparatus was designed to achieve a higher pressure-bearing capacity and larger sample cavity. The stress distributions of the DLSDs with different numbers of divided blocks were investigated by the finite element method and compared with the stress distributions of the conventional belt-type die(BTD). The results show that the cylinders and first-layer supporting rings of the DLSDs have dramatically smaller stresses than those of the BTD. In addition, increasing the number of divided blocks from 4 to 10 gradually increases the stress of the cylinder but has minimal influence on the stress of the supporting rings. The pressure-bearing capacities of the DLSDs with different numbers of divided blocks, especially with fewer blocks, are all remarkably higher than the pressure-bearing capacity of the BTD. The contrast experiments were also carried out to verify the simulated results. It is concluded that the pressure-bearing capacities of the DLSDs with 4 and 8 divided blocks are 1.58 and 1.45 times greater than that of the BTD. This work is rewarding for the commercial synthesis of high-quality, large-sized superhard materials using a double-layered split high-pressure die.
文摘Ying-Qiong Basin is a typical high-temperature and overpressure basin, which is the main battlefield of oil and gas exploration in South China Sea and has made great breakthroughs in recent years. During drilling process in high pressure, the relationship between the deep and the pressure is directly related to the drilling safety and costs. In order to improve prediction accuracy, the VSP operation is carried out through the midway, and three points have been obtained: 1) The VSP has a higher accuracy of the interface depth in certain depth range of the drill bit. 2) When the low-frequency trend prediction is accurate before the drill bit, interval velocity of the VSP inversion is consistent with the formation velocity. 3) The VSP pressure forecast is based on the inversion layer velocity and under-compaction pressure. If the velocity prediction is not accurate, the pressure forecast must be erroneous. If the pressure has other sources, the formation pressure is not accurate even if the inversion velocity is accurate. The application scope and exploration effect of midway VSP operation are summarized and applied to Ledong 10-1 block in Yinggehai basin, which realize the breakthrough in the field of high temperature overpressure and provide the basis for other similar exploration areas to do VSP operation.
基金supported by National High Technology Research and Development Program of China(Grant No.2015AA8016029A)
文摘The propagation of the high-power microwave(HPM) with a frequency of 6 GHz in the lowpressure argon plasma was studied by the method of fluid approximation.The two-dimensional transmission model was built based on the wave equation,the electron drift-diffusion equations and the heavy species transport equations,which were solved by means of COMSOL Multiphysics software.The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma.The attenuation of the transmitted wave increased nonlinearly with the electron density.Specifically,the growth of the attenuation slowed down as the electron density increased uniformly.In addition,the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.
基金The work was financially supported by the Significant Fundamental Research Development & Planning of China (G2000067208-3) the Significant Project of the National Natural Science Foundation of China (59990470-3)and the internal research fund of Tsing
文摘The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.
文摘To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed in this paper. And then numerical calculations were carried out. The effects on downstream flow field were studied and analyzed in detail. Results show that, at the middle of stator blades, although the increasing Maeh number causes the increase of shock-wave strength and friction, the middle flow field of downstream rotors is improved obviously. It is an important change in transonic condition. This causes the loss of the rotor' s middle part decreased greatly. Correspondingly, efficiency of the whole transonic stage can be increased.