The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pul...The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pulsed magnetic field. The refinement effect of the pulsed magnetic field is affected by the melt cooling rate and superheating. The decrease of cooling rate and superheating enhance the refinement effect of the low voltage pulsed magnetic field. The magnetic force and the melt flow during solidification are modeled and simulated to reveal the grain refinement mechanism. It is considered that the melt convection caused by the pulsed magnetic field, as well as cooling rate and superheating contributes to the refinement of solidified grains.展开更多
The osteogenic in vitro effect of low intensity pulsed ultrasound (LIPUS) on SD rat adi-pose-derived stem cells (ADSCs) was investigated.Rat ADSCs underwent LIPUS (intensity=100 mW/cm2) or sham exposure for 8 min per ...The osteogenic in vitro effect of low intensity pulsed ultrasound (LIPUS) on SD rat adi-pose-derived stem cells (ADSCs) was investigated.Rat ADSCs underwent LIPUS (intensity=100 mW/cm2) or sham exposure for 8 min per treatment once everyday in vitro,and then the alkaline phos-phatase (ALP) activity and mineralized nodule formation were assessed to evaluate the osteogenic effect of LIPUS on ADSCs.To further explore the underlying mechanism,the osteogenic-related gene mRNA expression was determined by using reverse transcriptase-polymerase chain reaction (RT-PCR) at 1st,3rd,5th,7th day after exposure repectively.Westen blot was used to evaluate the protein expression levels of two osteogenic differentiation associated genes at 7th and 14th day repectively.It was found that ALP activity was increased after LIPUS exposure and LIPUS resulted in mineralized nodule formation of ADSCs in vitro.LIPUS-treated ADSCs displayed higher mRNA expression levels of runt-related transcription factor 2 (Runx2),osteocalcin (OCN),ALP and bone sialoprotein (BSP) genes than con-trols,and the protein levels of Runx2 and BSP were also increased.The results suggested that LIPUS may induce the osteogenic differentiation of ADSCs in vitro.展开更多
In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is lar...In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.展开更多
The low voltage pulsed magnetic field(LVPMF)disrupts the columnar dendrite growth,and the columnarto-equiaxed transition(CET)occurs during the directional solidification of superalloy K4169.Within the pulse voltage ra...The low voltage pulsed magnetic field(LVPMF)disrupts the columnar dendrite growth,and the columnarto-equiaxed transition(CET)occurs during the directional solidification of superalloy K4169.Within the pulse voltage ranging from 100Vto 200 V,a transition from columnar to equiaxed grain was observed,and the grain size decreased as the pulse voltage rised.As the pulse frequency increased,the CET occurred,and the grains were refined.However,the grains became coarse,and the solidification structure was columnar crystal again when frequency increased to 10 Hz.The LVPMF had an optimal frequency to promote CET.The LVPMF on the CET was affected by the withdrawal speed and increasing the withdrawal speed enhances the CET.The distribution of electromagnetic force and flow field in the melt under the LVPMF were modeled and simulated to reveal the CET mechanism.It is considered that the CET should be attributed to the coupling effects of magnetic vibration and melt convection induced by the LVPMF.展开更多
基金Project(2010CB631205)supported by the National Basic Research Program of ChinaProject(51034012)supported by the National Natural Science Foundation of China
文摘The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pulsed magnetic field. The refinement effect of the pulsed magnetic field is affected by the melt cooling rate and superheating. The decrease of cooling rate and superheating enhance the refinement effect of the low voltage pulsed magnetic field. The magnetic force and the melt flow during solidification are modeled and simulated to reveal the grain refinement mechanism. It is considered that the melt convection caused by the pulsed magnetic field, as well as cooling rate and superheating contributes to the refinement of solidified grains.
文摘The osteogenic in vitro effect of low intensity pulsed ultrasound (LIPUS) on SD rat adi-pose-derived stem cells (ADSCs) was investigated.Rat ADSCs underwent LIPUS (intensity=100 mW/cm2) or sham exposure for 8 min per treatment once everyday in vitro,and then the alkaline phos-phatase (ALP) activity and mineralized nodule formation were assessed to evaluate the osteogenic effect of LIPUS on ADSCs.To further explore the underlying mechanism,the osteogenic-related gene mRNA expression was determined by using reverse transcriptase-polymerase chain reaction (RT-PCR) at 1st,3rd,5th,7th day after exposure repectively.Westen blot was used to evaluate the protein expression levels of two osteogenic differentiation associated genes at 7th and 14th day repectively.It was found that ALP activity was increased after LIPUS exposure and LIPUS resulted in mineralized nodule formation of ADSCs in vitro.LIPUS-treated ADSCs displayed higher mRNA expression levels of runt-related transcription factor 2 (Runx2),osteocalcin (OCN),ALP and bone sialoprotein (BSP) genes than con-trols,and the protein levels of Runx2 and BSP were also increased.The results suggested that LIPUS may induce the osteogenic differentiation of ADSCs in vitro.
文摘In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.
基金supported by the National Natural Science Foundation of China(No.51674236)the Key Research and Development Program of Liaoning Province(2019JH2/10100009)+1 种基金the National Science and Technology Major Project(No.2017-VI-00-0073)the National Key Research and Development Program(No.2018YFA0702900).
文摘The low voltage pulsed magnetic field(LVPMF)disrupts the columnar dendrite growth,and the columnarto-equiaxed transition(CET)occurs during the directional solidification of superalloy K4169.Within the pulse voltage ranging from 100Vto 200 V,a transition from columnar to equiaxed grain was observed,and the grain size decreased as the pulse voltage rised.As the pulse frequency increased,the CET occurred,and the grains were refined.However,the grains became coarse,and the solidification structure was columnar crystal again when frequency increased to 10 Hz.The LVPMF had an optimal frequency to promote CET.The LVPMF on the CET was affected by the withdrawal speed and increasing the withdrawal speed enhances the CET.The distribution of electromagnetic force and flow field in the melt under the LVPMF were modeled and simulated to reveal the CET mechanism.It is considered that the CET should be attributed to the coupling effects of magnetic vibration and melt convection induced by the LVPMF.