Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem...Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem,the key is how to mine or reveal as much DOA related in-formation as possible from the degraded array outputs.However,it is certain that there is no per-fect solution for low SNR DOA estimation designed in the way of winner-takes-all.Therefore,this paper proposes to explore in depth the complementary DOA related information that exists in spa-tial spectrums acquired by different basic DOA estimators.Specifically,these basic spatial spec-trums are employed as the input of multi-source information fusion model.And the multi-source in-formation fusion model is composed of three heterogeneous meta learning machines,namely neural networks(NN),support vector machine(SVM),and random forests(RF).The final meta-spec-trum can be obtained by performing a final decision-making method.Experimental results illus-trate that the proposed information fusion based DOA estimation method can really make full use of the complementary information in the spatial spectrums obtained by different basic DOA estim-ators.Even under low SNR conditions,promising DOA estimation performance can be achieved.展开更多
Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ...Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ear system which is sensitive to periodic signals and immune to noise at the same time. Those properties make it possible to detect low signal-to-noise ratio signals. The BPSK signal is a common signal type which is widely used in modern communication. Starting from the analysis of advantages of chaotic, os~.illator system and signal features of the BPSK signal, we put forward a unique method that can detect low signar-to-noise ratio BPSK sig- nals with high frequency. The simulation results show that the novel method can dclct.t low signal-to-noise ratio BPSK signals with frequency in an order of magnitude of l0s Hz, and the input Signal-to-Noise Ratio threshold can be -20 dB.展开更多
To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal ...To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal detection scheme. In this paper, we first analyse BSR system for different amplitudes of 4-ary PAM signals. The steadystate of the bistable system will be statistically distinct, and the feasibility of the proposed detection scheme is confirmed. On this basis, we present a detailed study on steady-state transitions of the BSR system, and an explicit expression of the bistable system parameters is derived. By setting the bistable system parameters, bistable system, 4-ary PAM signal, and noise reach the resonance state, and the BSR-based detection scheme is implemented. Moreover, we derive an analytical expression to calculate the symbol error rate(SER) of 4-ary PAM signals with the BSR-based detection under additive white Gaussian noise(AWGN). Finally, the simulation results validate that BSR-based detection scheme can improve the detection performance while efficiently reducing the symbol error rate.展开更多
The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondor...The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.展开更多
Micro-Doppler feature extraction of unmanned aerial vehicles(UAVs)is important for their identification and classification.Noise and the motion state of the UAV are the main factors that may affect feature extraction ...Micro-Doppler feature extraction of unmanned aerial vehicles(UAVs)is important for their identification and classification.Noise and the motion state of the UAV are the main factors that may affect feature extraction and estimation precision of the micro-motion parameters.The spectrum of UAV echoes is reconstructed to strengthen the micro-motion feature and reduce the influence of the noise on the condition of low signal to noise ratio(SNR).Then considering the rotor rate variance of UAV in the complex motion state,the cepstrum method is improved to extract the rotation rate of the UAV,and the blade length can be intensively estimated.The experiment results for the simulation data and measured data show that the reconstruction of the spectrum for the UAV echoes is helpful and the relative mean square root error of the rotating speed and blade length estimated by the proposed method can be improved.However,the computation complexity is higher and the heavier computation burden is required.展开更多
Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-no...Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.展开更多
As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analy...As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analysis,we first introduce the major factors affecting the spectral SNR.Taking green tea as an example,the influence of spectral SNR on the prediction accuracy of the origin identification model is analyzed by experiments.At the same time,the relationship between the spectral SNR and prediction accuracy of spectral analysis model is fitted.Based on this,the common methods for improving the spectral SNR are discussed.The results show that the accuracy of the prediction set model first decreases slowly,then decreases linearly,and finally tends to be flat as the spectral SNR decreases.Through calculation,in order to achieve the prediction accuracy of prediction model reaching 90%and 85%,the spectral SNR is required to be higher than 23.42 dB and 21.16 dB,respectively.The overall results provide certain parameters support for the development of new online analytical spectroscopic instruments,especially for the technical indicators of SNR.展开更多
A new tracking algorithm is proposed aiming at the tracking problem in low bit signal-to- noise ratio (i. e. , Eb/N0 ) scenarios, in which the bit clock regenerated by bit synchronization loop decides loop update mo...A new tracking algorithm is proposed aiming at the tracking problem in low bit signal-to- noise ratio (i. e. , Eb/N0 ) scenarios, in which the bit clock regenerated by bit synchronization loop decides loop update moment. The double frequency processing and non-coherent accumulation tech- nologies are applied to eliminate the impact of data polarity inversion, and then long time accumula- tion improves the input signal-to-noise ratio of discriminator. The frequency locked loop and phase locked loop constitute a carrier loop in parallel, which can meet the high dynamic demands. The ef- fectiveness of this algorithm has been corroborated by theoretical analysis, simulation and measure- ments, and the new tracking algorithm has been used in an aerospace engineering project successfully.展开更多
Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are imp...Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are important because acquisition speed, scanning mode, image quality, and radiation dose depend on them. Phase-stepping (PS) is a widely used method to retrieve information, while angular signal radiography (ASR) is a newly established method. In this manuscript, signal-to-noise ratios (SNRs) of ASR are compared with that of PS. Numerical experiments are performed to validate theoretical results. SNRs comparison shows that for refraction and scattering images ASR has higher SNR than PS method, while for absorption image both methods have same SNR. Therefore, our conclusions would have guideline in future preclinical and clinical applications.展开更多
The Turbo decoding performance will suffer serious degradation under low signal-to-noise ratios (SNR) conditions for the reason of residual frequency and phase offset in the carrier. In this paper, an improved resid...The Turbo decoding performance will suffer serious degradation under low signal-to-noise ratios (SNR) conditions for the reason of residual frequency and phase offset in the carrier. In this paper, an improved residual carrier frequency offset estimation algorithm based on a priori probability aided (APPA) phase estimation is proposed. A carrier synchronization loop that combines the iterative turbo decoder and the phase estimator together is constructed, where the extrinsic information obtained from the Turbo decoder is used to aid an iterative phase estimation process. The simulation results show that the algorithm performs successfully under very low SNR conditions (for example, less than -7.4 dB) with large frequency offset and phase error and the performance of this algorithm is very close to the optimally synchronized system.展开更多
Although the modified Goldstein filter based on the local signal-to-noise (SNR) has been proved to be superior to the classical Goldstein and Baran filters with more comprehensive filter parameter, its adaptation is...Although the modified Goldstein filter based on the local signal-to-noise (SNR) has been proved to be superior to the classical Goldstein and Baran filters with more comprehensive filter parameter, its adaptation is not always sufficient in the reduction of phase noise. In this work, the local SNR-based Goldstein filter is further developed with the improvements in the definition of the local SNR and the adaption of the filtering patch size. What's more, for preventing the loss of the phase signal caused by the excessive filtering, an iteration filtering operation is also introduced in this new algorithm. To evaluate the performance of the proposed algorithm, both a simulated digital elevation model (DEM) interferogram and real SAR deformation interferogram spanning the L' Aquila earthquake are carried out. The quantitative results from the simulated and real data reveal that up to 79.5% noises can be reduced by the new filter, indicating 9%-32% improvements over the previous local SNR-based Goldstein filter. This demonstrates that the new filter is not only equipped with sufficient adaption, but also can suppress the phase noise without the sacrifice of the phase signal.展开更多
The influence of array element’s consistency on the hydrophone array’s signal-to-noise ratio (SNR) is studied. The consistency of array elements means the outputs of all the array’s elements are the same, that is t...The influence of array element’s consistency on the hydrophone array’s signal-to-noise ratio (SNR) is studied. The consistency of array elements means the outputs of all the array’s elements are the same, that is to say, the outputs have the same phase and amplitude when their inputs are the same. The relationship between the SNR and the correlation coefficient of signal and the relationship between the SNR and the correlation coefficient of noise are given. Hydrophone array’s gain with the output of elements’ inconsistent phase and amplitude is analyzed theoretically. When the signal is single-frequency, the gain expression of two-elements array is deduced. Then the gain is calculated when the phase difference is 10° and the amplitude difference is 3 dB. The theoretical analysis is verified through simulation. The simulation results show the variation rule of array’s SNR when the consistency changes: the array SNR gain is greatly affected by the consistency of the elements’ output and the gain decreases as the consistency decreases and the gain may be negative when the amplitude response becomes worse.展开更多
A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estim...A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estimation are derived, and simulations are performed for the commonly used digital bandpass signals, such as MPSK (M=2, 4, 8), MFSK (M=2, 4) and MQAM (M=16, 64, 128, 256) signals. Theoretical analyses and simulation results indicate that the proposed algorithm is ef- fective even when the SNR is below 0dB. Furthermore, the algorithm can provide a blind estimator in that it needs neither the parameters of the received signals, such as the carrier frequency, symbol rate and modulation scheme, nor the synchronization of the system.展开更多
It is important to estimate the Signal-to-Noise Ratio(SNR) of unknown emitter signal accurately.In order to resolve the disadvantages of present algorithm,a novel method is proposed in this letter.We extract and norma...It is important to estimate the Signal-to-Noise Ratio(SNR) of unknown emitter signal accurately.In order to resolve the disadvantages of present algorithm,a novel method is proposed in this letter.We extract and normalize the information of zero frequency of received signal by the Wigner-Vile Distribution(WVD) transformation and then get the approximate power of original signal by mathematic transformation,at last,we get the estimate value of SNR by the known account formula of SNR.Simulation results show that it is correct and feasible.展开更多
In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several over...In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several overlapping intervals which had equal length, and the spectrum concentration measures of every interval were extracted by the FFT. And then, using the grid-density clustering, the spectrum concentration measures were classified into two categories, the narrowband spectrum interval and the wideband spectrum interval. The narrowband spectrum interval was regarded as the characteristic class. The spectrums of the characteristic class were accumulated to estimate the carrier frequency of PSK signal. The proposed method had avoided the non linear operation in the traditional PSK signal carrier frequency estimation algorithm. Thus, the signal to noise ratio (SNR) threshold was remarkably decreased. Moreover, the proposed method did not need the prior knowledge of the signal, which was suitable to the electronic reconnaissance occasion. Experimental results had verified the validity of the proposed estimation method in low SNR.展开更多
This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The spec...This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.展开更多
The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power ...The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power and pulse width influence on SNR is studied on the theoretical derivation and analysis,and the results show that the higher the peak power can realize the greater the signal-to-noise ratio of coherent Doppler wind lidar.But when the peak power is too large,the laser pulse may appear nonlinear phenomenon,which cause the damage of the laser.So,the peak power must be less than the stimulated brillouin scattering power threshold.Increasing the pulse width can make the laser device to output more energy,but it will also make the spatial resolution lower,and the influence of turbulence on SNR will be greater.After a series of simulation analyses,it can be concluded that when the peak power is 650W and the pulse width is 340ns,the SNR of the system can be maximized.In addition,the coherent Doppler wind lidar system is set up to carry out corresponding experimental verification.The experimental results are consistent with the theoretical analysis and simulation,which verifies the correctness of the theoretical analysis and simulation results.It provides theoretical basis and practical ex-perience for the design of laser transmitting pulse in coherent Doppler wind lidar system.展开更多
A novel frame shift and integral technique for the enhancement of low light level moving image sequence is introduced. According to the technique, motion parameters of target are measured by algorithm based on differe...A novel frame shift and integral technique for the enhancement of low light level moving image sequence is introduced. According to the technique, motion parameters of target are measured by algorithm based on difference processing. To obtain spatial relativity, images are shifted according to the motion parameters. As a result, the processing of integral and average can be applied to images that have been shifted. The technique of frame shift and integral that includes the algorithm of motion parameter determination is discussed, experiments with low light level moving image sequences are also described. The experiment results show the effectiveness and the robustness of the parameter determination algorithm, and the improvement in the signal-to-noise ratio (SNR) of low light level moving images.展开更多
Low excitation voltage for an electromagnetic acoustic transducer(EMAT)is necessary for the petrochemical equipment and facilities inspection,which work at high-temperatures,to avoid potential explosion.However,low ex...Low excitation voltage for an electromagnetic acoustic transducer(EMAT)is necessary for the petrochemical equipment and facilities inspection,which work at high-temperatures,to avoid potential explosion.However,low excitation voltage causes low signal-to-noise ratio(SNR)signals that are difficult to extract features,especially in a high-temperature environment,which causes high noise.In this study,a denoising method called the variational wavelet ensemble empirical(VWEE)method was proposed by combining the advantages of the variational modal decomposition(VMD),wavelet threshold(WT)denoising,and ensemble empirical mode decomposition(EEMD)methods.To validate the VWEE method,EMAT signals obtained in the temperature range of 25 to 700°C were analyzed.The results show that,compared with VMD,WT and empirical mode decomposition denoising methods,the SNR of proposed method is improved more than two times.The VWEE method dramatically improved the SNR of a high-temperature EMAT signal and enhanced the accuracy of defect echos extraction.展开更多
基金the National Natural Science Foundation of China(Nos.11774073 and 51279033).
文摘Efficiently performing high-resolution direction of arrival(DOA)estimation under low signal-to-noise ratio(SNR)conditions has always been a challenge task in the literatures.Obvi-ously,in order to address this problem,the key is how to mine or reveal as much DOA related in-formation as possible from the degraded array outputs.However,it is certain that there is no per-fect solution for low SNR DOA estimation designed in the way of winner-takes-all.Therefore,this paper proposes to explore in depth the complementary DOA related information that exists in spa-tial spectrums acquired by different basic DOA estimators.Specifically,these basic spatial spec-trums are employed as the input of multi-source information fusion model.And the multi-source in-formation fusion model is composed of three heterogeneous meta learning machines,namely neural networks(NN),support vector machine(SVM),and random forests(RF).The final meta-spec-trum can be obtained by performing a final decision-making method.Experimental results illus-trate that the proposed information fusion based DOA estimation method can really make full use of the complementary information in the spatial spectrums obtained by different basic DOA estim-ators.Even under low SNR conditions,promising DOA estimation performance can be achieved.
文摘Based on chaotic oscillator system, this paper proposes a novel method on high frequency low signal- to-noise ratio BPSK( Binary Phase Shift Keying) signal detection. Chaotic oscillator system is a typical non-lin- ear system which is sensitive to periodic signals and immune to noise at the same time. Those properties make it possible to detect low signal-to-noise ratio signals. The BPSK signal is a common signal type which is widely used in modern communication. Starting from the analysis of advantages of chaotic, os~.illator system and signal features of the BPSK signal, we put forward a unique method that can detect low signar-to-noise ratio BPSK sig- nals with high frequency. The simulation results show that the novel method can dclct.t low signal-to-noise ratio BPSK signals with frequency in an order of magnitude of l0s Hz, and the input Signal-to-Noise Ratio threshold can be -20 dB.
基金supported by the National Natural Science Foundation of China (61631015, 61501354, 61501356, and 61573202)the Fundamental Research Funds of the Ministry of Education (7215433803)+5 种基金the Foundation of State Key Laboratory of Integrated Services Networks (ISN1101002)Higher School Subject Innovation Engineering Plan (B08038)Science and Technology Innovation Team Key Plan of Shaanxi Province (2016KCT-01)The Fundamental Research Funds of the Ministry of Education, China (Grant No. JB160101)The Key Laboratory Foundation of Ministry of Industry and Information Technology (KF20181912)China Postdoctoral Science Foundation (2018M631122)
文摘To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal detection scheme. In this paper, we first analyse BSR system for different amplitudes of 4-ary PAM signals. The steadystate of the bistable system will be statistically distinct, and the feasibility of the proposed detection scheme is confirmed. On this basis, we present a detailed study on steady-state transitions of the BSR system, and an explicit expression of the bistable system parameters is derived. By setting the bistable system parameters, bistable system, 4-ary PAM signal, and noise reach the resonance state, and the BSR-based detection scheme is implemented. Moreover, we derive an analytical expression to calculate the symbol error rate(SER) of 4-ary PAM signals with the BSR-based detection under additive white Gaussian noise(AWGN). Finally, the simulation results validate that BSR-based detection scheme can improve the detection performance while efficiently reducing the symbol error rate.
基金supported by the Program for New Century Excellent Talents in University, Ministry of Education (NCET-05-0803)
文摘The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.
基金supported by the National Natural Science Foundation of China(62141108)Natural Science Foundation of Tianjin(19JCQNJC01000)。
文摘Micro-Doppler feature extraction of unmanned aerial vehicles(UAVs)is important for their identification and classification.Noise and the motion state of the UAV are the main factors that may affect feature extraction and estimation precision of the micro-motion parameters.The spectrum of UAV echoes is reconstructed to strengthen the micro-motion feature and reduce the influence of the noise on the condition of low signal to noise ratio(SNR).Then considering the rotor rate variance of UAV in the complex motion state,the cepstrum method is improved to extract the rotation rate of the UAV,and the blade length can be intensively estimated.The experiment results for the simulation data and measured data show that the reconstruction of the spectrum for the UAV echoes is helpful and the relative mean square root error of the rotating speed and blade length estimated by the proposed method can be improved.However,the computation complexity is higher and the heavier computation burden is required.
基金the National Natural Science Foundation of China(Grant Nos.61973037 and 61673066).
文摘Conventional parameter estimation methods for pseudo-random binary code-linear frequency modulation(PRBC-LFM)signals require prior knowledge,are computationally complex,and exhibit poor performance at low signal-to-noise ratios(SNRs).To overcome these problems,a blind parameter estimation method based on a Duffing oscillator array is proposed.A new relationship formula among the state of the Duffing oscillator,the pseudo-random sequence of the PRBC-LFM signal,and the frequency difference between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is derived,providing the theoretical basis for blind parameter estimation.Methods based on amplitude method,short-time Fourier transform method,and power spectrum entropy method are used to binarize the output of the Duffing oscillator array,and their performance is compared.The pseudo-random sequence is estimated using Duffing oscillator array synchronization,and the carrier frequency parameters are obtained by the relational expressions and characteristics of the difference frequency.Simulation results show that this blind estimation method overcomes limitations in prior knowledge and maintains good parameter estimation performance up to an SNR of-35 dB.
基金Key Research and Development Program of Anhui Province(No.201904a07020073)Science and Technology Foundation of Electronic Test&Measurement Laboratory(No.6142001180307)National Basic Research Program(No.JSJL2018210C003)。
文摘As one of the important indicators of spectrometer,signal-to-noise ratio(SNR)reflects the ability of spectrometer to detect weak signals.To investigate the influence of SNR on the prediction accuracy of spectral analysis,we first introduce the major factors affecting the spectral SNR.Taking green tea as an example,the influence of spectral SNR on the prediction accuracy of the origin identification model is analyzed by experiments.At the same time,the relationship between the spectral SNR and prediction accuracy of spectral analysis model is fitted.Based on this,the common methods for improving the spectral SNR are discussed.The results show that the accuracy of the prediction set model first decreases slowly,then decreases linearly,and finally tends to be flat as the spectral SNR decreases.Through calculation,in order to achieve the prediction accuracy of prediction model reaching 90%and 85%,the spectral SNR is required to be higher than 23.42 dB and 21.16 dB,respectively.The overall results provide certain parameters support for the development of new online analytical spectroscopic instruments,especially for the technical indicators of SNR.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA1569)
文摘A new tracking algorithm is proposed aiming at the tracking problem in low bit signal-to- noise ratio (i. e. , Eb/N0 ) scenarios, in which the bit clock regenerated by bit synchronization loop decides loop update moment. The double frequency processing and non-coherent accumulation tech- nologies are applied to eliminate the impact of data polarity inversion, and then long time accumula- tion improves the input signal-to-noise ratio of discriminator. The frequency locked loop and phase locked loop constitute a carrier loop in parallel, which can meet the high dynamic demands. The ef- fectiveness of this algorithm has been corroborated by theoretical analysis, simulation and measure- ments, and the new tracking algorithm has been used in an aerospace engineering project successfully.
基金Project supported by the National Research and Development Project for Key Scientific Instruments(Grant No.CZBZDYZ20140002)the National Natural Science Foundation of China(Grant Nos.11535015,11305173,and 11375225)+2 种基金the project supported by Institute of High Energy Physics,Chinese Academy of Sciences(Grant No.Y4545320Y2)the Fundamental Research Funds for the Central Universities(Grant No.WK2310000065)Wali Faiz,acknowledges and wishes to thank the Chinese Academy of Sciences and The World Academy of Sciences(CAS-TWAS)President’s Fellowship Program for generous financial support
文摘Grating-based x-ray phase contrast imaging has the potential to be applied in future medical applications as it is compatible with both laboratory and synchrotron source. However, information retrieval methods are important because acquisition speed, scanning mode, image quality, and radiation dose depend on them. Phase-stepping (PS) is a widely used method to retrieve information, while angular signal radiography (ASR) is a newly established method. In this manuscript, signal-to-noise ratios (SNRs) of ASR are compared with that of PS. Numerical experiments are performed to validate theoretical results. SNRs comparison shows that for refraction and scattering images ASR has higher SNR than PS method, while for absorption image both methods have same SNR. Therefore, our conclusions would have guideline in future preclinical and clinical applications.
基金supported by the National Natural Science Foundation of China under Grant No.60602008National 863 Programs under Grant No.2007AA01Z299,2006AA01Z269
文摘The Turbo decoding performance will suffer serious degradation under low signal-to-noise ratios (SNR) conditions for the reason of residual frequency and phase offset in the carrier. In this paper, an improved residual carrier frequency offset estimation algorithm based on a priori probability aided (APPA) phase estimation is proposed. A carrier synchronization loop that combines the iterative turbo decoder and the phase estimator together is constructed, where the extrinsic information obtained from the Turbo decoder is used to aid an iterative phase estimation process. The simulation results show that the algorithm performs successfully under very low SNR conditions (for example, less than -7.4 dB) with large frequency offset and phase error and the performance of this algorithm is very close to the optimally synchronized system.
基金Foundation item: Projects(40974006, 40774003) supported by the National Natural Science Foundation of China Project(NCET-08-0570) supported by the Program for New Century Excellent Talents in Universities of China+2 种基金 Proj ect(2011JQ001) supported by the Fundamental Research Funds for the Central Universities of China Project(PolyU 5155/07E) supported by the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China Project(CX2011B 102) supported by the Doctoral Research Innovation of Hunan Province, China
文摘Although the modified Goldstein filter based on the local signal-to-noise (SNR) has been proved to be superior to the classical Goldstein and Baran filters with more comprehensive filter parameter, its adaptation is not always sufficient in the reduction of phase noise. In this work, the local SNR-based Goldstein filter is further developed with the improvements in the definition of the local SNR and the adaption of the filtering patch size. What's more, for preventing the loss of the phase signal caused by the excessive filtering, an iteration filtering operation is also introduced in this new algorithm. To evaluate the performance of the proposed algorithm, both a simulated digital elevation model (DEM) interferogram and real SAR deformation interferogram spanning the L' Aquila earthquake are carried out. The quantitative results from the simulated and real data reveal that up to 79.5% noises can be reduced by the new filter, indicating 9%-32% improvements over the previous local SNR-based Goldstein filter. This demonstrates that the new filter is not only equipped with sufficient adaption, but also can suppress the phase noise without the sacrifice of the phase signal.
基金Major State Basic Research Development Program of China(No.2016YFC0101900)Applied Basic Research Project of Shanxi Province(Nos.201601D011035,201701D121067)
文摘The influence of array element’s consistency on the hydrophone array’s signal-to-noise ratio (SNR) is studied. The consistency of array elements means the outputs of all the array’s elements are the same, that is to say, the outputs have the same phase and amplitude when their inputs are the same. The relationship between the SNR and the correlation coefficient of signal and the relationship between the SNR and the correlation coefficient of noise are given. Hydrophone array’s gain with the output of elements’ inconsistent phase and amplitude is analyzed theoretically. When the signal is single-frequency, the gain expression of two-elements array is deduced. Then the gain is calculated when the phase difference is 10° and the amplitude difference is 3 dB. The theoretical analysis is verified through simulation. The simulation results show the variation rule of array’s SNR when the consistency changes: the array SNR gain is greatly affected by the consistency of the elements’ output and the gain decreases as the consistency decreases and the gain may be negative when the amplitude response becomes worse.
文摘A subspace-based blind Signal-to-Noise Ratio (SNR) estimation algorithm for digital bandpass signals in Additive White Gaussian Noise (AWGN) channel is discussed. The lower bounds of the mean and variance of the estimation are derived, and simulations are performed for the commonly used digital bandpass signals, such as MPSK (M=2, 4, 8), MFSK (M=2, 4) and MQAM (M=16, 64, 128, 256) signals. Theoretical analyses and simulation results indicate that the proposed algorithm is ef- fective even when the SNR is below 0dB. Furthermore, the algorithm can provide a blind estimator in that it needs neither the parameters of the received signals, such as the carrier frequency, symbol rate and modulation scheme, nor the synchronization of the system.
文摘It is important to estimate the Signal-to-Noise Ratio(SNR) of unknown emitter signal accurately.In order to resolve the disadvantages of present algorithm,a novel method is proposed in this letter.We extract and normalize the information of zero frequency of received signal by the Wigner-Vile Distribution(WVD) transformation and then get the approximate power of original signal by mathematic transformation,at last,we get the estimate value of SNR by the known account formula of SNR.Simulation results show that it is correct and feasible.
文摘In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several overlapping intervals which had equal length, and the spectrum concentration measures of every interval were extracted by the FFT. And then, using the grid-density clustering, the spectrum concentration measures were classified into two categories, the narrowband spectrum interval and the wideband spectrum interval. The narrowband spectrum interval was regarded as the characteristic class. The spectrums of the characteristic class were accumulated to estimate the carrier frequency of PSK signal. The proposed method had avoided the non linear operation in the traditional PSK signal carrier frequency estimation algorithm. Thus, the signal to noise ratio (SNR) threshold was remarkably decreased. Moreover, the proposed method did not need the prior knowledge of the signal, which was suitable to the electronic reconnaissance occasion. Experimental results had verified the validity of the proposed estimation method in low SNR.
基金Supported by the National Natural Science Foundation of China(No.60496311)
文摘This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.
文摘The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power and pulse width influence on SNR is studied on the theoretical derivation and analysis,and the results show that the higher the peak power can realize the greater the signal-to-noise ratio of coherent Doppler wind lidar.But when the peak power is too large,the laser pulse may appear nonlinear phenomenon,which cause the damage of the laser.So,the peak power must be less than the stimulated brillouin scattering power threshold.Increasing the pulse width can make the laser device to output more energy,but it will also make the spatial resolution lower,and the influence of turbulence on SNR will be greater.After a series of simulation analyses,it can be concluded that when the peak power is 650W and the pulse width is 340ns,the SNR of the system can be maximized.In addition,the coherent Doppler wind lidar system is set up to carry out corresponding experimental verification.The experimental results are consistent with the theoretical analysis and simulation,which verifies the correctness of the theoretical analysis and simulation results.It provides theoretical basis and practical ex-perience for the design of laser transmitting pulse in coherent Doppler wind lidar system.
文摘A novel frame shift and integral technique for the enhancement of low light level moving image sequence is introduced. According to the technique, motion parameters of target are measured by algorithm based on difference processing. To obtain spatial relativity, images are shifted according to the motion parameters. As a result, the processing of integral and average can be applied to images that have been shifted. The technique of frame shift and integral that includes the algorithm of motion parameter determination is discussed, experiments with low light level moving image sequences are also described. The experiment results show the effectiveness and the robustness of the parameter determination algorithm, and the improvement in the signal-to-noise ratio (SNR) of low light level moving images.
基金National Natural Science Foundation of China(Grant No.62071433)Shanxi Province Graduate Student Innovation Project(Grant No.2021Y583).
文摘Low excitation voltage for an electromagnetic acoustic transducer(EMAT)is necessary for the petrochemical equipment and facilities inspection,which work at high-temperatures,to avoid potential explosion.However,low excitation voltage causes low signal-to-noise ratio(SNR)signals that are difficult to extract features,especially in a high-temperature environment,which causes high noise.In this study,a denoising method called the variational wavelet ensemble empirical(VWEE)method was proposed by combining the advantages of the variational modal decomposition(VMD),wavelet threshold(WT)denoising,and ensemble empirical mode decomposition(EEMD)methods.To validate the VWEE method,EMAT signals obtained in the temperature range of 25 to 700°C were analyzed.The results show that,compared with VMD,WT and empirical mode decomposition denoising methods,the SNR of proposed method is improved more than two times.The VWEE method dramatically improved the SNR of a high-temperature EMAT signal and enhanced the accuracy of defect echos extraction.