Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle,...Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.展开更多
The internal leakage has important influence on low speed performance of continuous rotary electro-hydraulic motors,and research on internal leakage is of important significance to improve the motor low speed performa...The internal leakage has important influence on low speed performance of continuous rotary electro-hydraulic motors,and research on internal leakage is of important significance to improve the motor low speed performance. UG software is adopted to establish a flow field inside a motor,which ignores the gap between the blade and the blade groove,and a motor fluid model in different working conditions is established. Using ICEM-CFD to generate high-quality O-Net mesh for meeting the computing requirements,the flow field inside the motor is simulated using fluid simulation software CFX. Applying reasonable boundary conditions and then solving it,pressure field distribution and the variation rule of internal leakage with different pressure difference in the flow field are obtained when the clearance value of the motor key components is 0.01 mm. At the same time the motor's leakage experiment has also been done to verify the validity of the simulation results,which lays a foundation for the study of motor internal leakage effect on the low speed performance.展开更多
In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance,the design method of backstepping adaptive controller is put forward.The mathematic...In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance,the design method of backstepping adaptive controller is put forward.The mathematical model of electro-hydraulic servo system of continuous rotary motor is established,and the whole system is decomposed into several lower order subsystems,and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory,an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability,and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor,and the proposed control strategy is feasible.展开更多
针对氢燃料电池大功率电机驱动系统,提出一种以燃料电池为主动力源的轻量化级联H桥(cascadedH-bridge,CHB)型混合动力中压电机调速系统。所提系统由燃料电池/蓄电池/超级电容的混合动力源供电,基于四有源桥(quad activebridge,QAB)与CH...针对氢燃料电池大功率电机驱动系统,提出一种以燃料电池为主动力源的轻量化级联H桥(cascadedH-bridge,CHB)型混合动力中压电机调速系统。所提系统由燃料电池/蓄电池/超级电容的混合动力源供电,基于四有源桥(quad activebridge,QAB)与CHB子模块互联的两级变换器(cascaded H-bridges with quad active bridge,CHB-QAB)作为调速变换器。CHB-QAB通过四绕组高频变压器将各子模块进行内部互联,采用单边同步双边移相调制的策略,使得所有子模块呈现开关电容特性,在不依赖复杂控制的前提下,减小子模块电容的容值,提升系统的功率密度。针对三类动力源,采用基于低通滤波(lowpassfilter,LPF)的能量管理策略,保证电机实际运行过程中的有效功率分配,解决燃料电池对电机动态响应缓慢和燃料饥饿现象等问题。最后通过仿真与实验对所提轻量化电机调速系统进行验证。展开更多
文摘Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.
基金Supported by the National Natural Science Foundation of China(No.51305108)Heilongjiang Province Ordinary Higher School Youth Academic Backbone Support Program(No.1254G025)Post Doctoral Researchers Settled in Heilongjiang Research Start Funding Projects(No.LBH-Q15069)
文摘The internal leakage has important influence on low speed performance of continuous rotary electro-hydraulic motors,and research on internal leakage is of important significance to improve the motor low speed performance. UG software is adopted to establish a flow field inside a motor,which ignores the gap between the blade and the blade groove,and a motor fluid model in different working conditions is established. Using ICEM-CFD to generate high-quality O-Net mesh for meeting the computing requirements,the flow field inside the motor is simulated using fluid simulation software CFX. Applying reasonable boundary conditions and then solving it,pressure field distribution and the variation rule of internal leakage with different pressure difference in the flow field are obtained when the clearance value of the motor key components is 0.01 mm. At the same time the motor's leakage experiment has also been done to verify the validity of the simulation results,which lays a foundation for the study of motor internal leakage effect on the low speed performance.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51305108)Foundation for the Heilongjiang Province Ordinary University Youth Academic Backbone Support Program(Grant No.1254G025)China Postdoctoral Science Foundation(Grant No.2012M510982)
文摘In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance,the design method of backstepping adaptive controller is put forward.The mathematical model of electro-hydraulic servo system of continuous rotary motor is established,and the whole system is decomposed into several lower order subsystems,and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory,an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability,and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor,and the proposed control strategy is feasible.
文摘针对氢燃料电池大功率电机驱动系统,提出一种以燃料电池为主动力源的轻量化级联H桥(cascadedH-bridge,CHB)型混合动力中压电机调速系统。所提系统由燃料电池/蓄电池/超级电容的混合动力源供电,基于四有源桥(quad activebridge,QAB)与CHB子模块互联的两级变换器(cascaded H-bridges with quad active bridge,CHB-QAB)作为调速变换器。CHB-QAB通过四绕组高频变压器将各子模块进行内部互联,采用单边同步双边移相调制的策略,使得所有子模块呈现开关电容特性,在不依赖复杂控制的前提下,减小子模块电容的容值,提升系统的功率密度。针对三类动力源,采用基于低通滤波(lowpassfilter,LPF)的能量管理策略,保证电机实际运行过程中的有效功率分配,解决燃料电池对电机动态响应缓慢和燃料饥饿现象等问题。最后通过仿真与实验对所提轻量化电机调速系统进行验证。