A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD ...A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD patterns indicate that the structures of high oxygen pressure RE_2CuO_4 (only for RE=Sm, Eu) samples are pure T′ phase, but when RE= Gd, Tb, Dy, Ho, Er, Tm, the structures turn to disorder. The magnetic anomalies that occurred at T^30 K are observed in high oxygen pressure RE_2CuO_4. It is found that the transition temperatures of weak ferromagnetic anomalies are nearly independent of the rare-earth components. Thus, the O-doping plays an important role in anomalous magnetic properties of RE_2CuO_(4+δ). The magnetic anomalies in RE_2CuO_4 are considered to be due to ferromagnetic clusters formed in the Cu-O plane after the oxygen doping.展开更多
We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Con...We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.展开更多
The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with se...The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with semiconducting transport properties, which is different from the semimetallic CaB6 single crystals. The temperaturedependent resistance measurement results show that before the structural phase transition at 12.3 GPa the high pressure first induces the metallization at 6.5 GPa for CAB6. Moreover, the phase diagram for CaB6 is drawn based on the investigated electric conducting properties and at least three different conducting phases are found even at moderate high pressure and low temperature, indicating that the electric nature of CaB6 is very sensitive to the environment.展开更多
Polycrystalline cubic boron nitride(Pc BN)compacts,using the mixture of submicron cubic boron nitride(c BN)powder and hexagonal BN(h BN)powder as starting materials,were sintered at pressures of 6.5–10.0 GPa and temp...Polycrystalline cubic boron nitride(Pc BN)compacts,using the mixture of submicron cubic boron nitride(c BN)powder and hexagonal BN(h BN)powder as starting materials,were sintered at pressures of 6.5–10.0 GPa and temperature of1750℃without additives.In this paper,the sintering behavior and mechanical properties of samples were investigated.The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and h BN contents ranged from 20 vol.%to 24 vol.%,which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure.Transmission electron microscopy(TEM)analysis shows that after high pressure and high temperature(HPHT)treatments,the submicron c BN grains abounded with high-density nanotwins and stacking faults,and this contributed to the outstanding mechanical properties of Pc BN.The pure bulk Pc BN that was obtained at 7.7 GPa/1750℃possessed the outstanding properties,including a high Vickers hardness(~61.5 GPa),thermal stability(~1290℃in air),and high density(~3.46 g/cm^(3)).展开更多
A regrown composite fiber was synthesized during the sintering of diamond under high pressure 5.8 GPa and high temperature 1500℃for 1 min,using 3wt%MWCNTs as additive.SEM observation of the fiber after alkali and aci...A regrown composite fiber was synthesized during the sintering of diamond under high pressure 5.8 GPa and high temperature 1500℃for 1 min,using 3wt%MWCNTs as additive.SEM observation of the fiber after alkali and acid treatment revealed that the outer layer of the fiber is composed of nano-polycrystalline diamond.EDS,XPS,XRD and Raman spectrum analysis further identified that the fiber is composed of MWCNTs in the inner part and nano-polycrystalline diamond in the out layer.It is proposed that the untransformed MWCNTs may act as a template for the regrown outer layer of nano diamond fiber under high pressure and high temperature.展开更多
Ying-Qiong Basin is a typical high-temperature and overpressure basin, which is the main battlefield of oil and gas exploration in South China Sea and has made great breakthroughs in recent years. During drilling proc...Ying-Qiong Basin is a typical high-temperature and overpressure basin, which is the main battlefield of oil and gas exploration in South China Sea and has made great breakthroughs in recent years. During drilling process in high pressure, the relationship between the deep and the pressure is directly related to the drilling safety and costs. In order to improve prediction accuracy, the VSP operation is carried out through the midway, and three points have been obtained: 1) The VSP has a higher accuracy of the interface depth in certain depth range of the drill bit. 2) When the low-frequency trend prediction is accurate before the drill bit, interval velocity of the VSP inversion is consistent with the formation velocity. 3) The VSP pressure forecast is based on the inversion layer velocity and under-compaction pressure. If the velocity prediction is not accurate, the pressure forecast must be erroneous. If the pressure has other sources, the formation pressure is not accurate even if the inversion velocity is accurate. The application scope and exploration effect of midway VSP operation are summarized and applied to Ledong 10-1 block in Yinggehai basin, which realize the breakthrough in the field of high temperature overpressure and provide the basis for other similar exploration areas to do VSP operation.展开更多
Cubic boron nitride(CBN) composites starting with CBN-Al mixtures were sintered on WC-16 wt%Co substrate under static high pressure of 5.0 GPa at temperatures of 800 to 1 400℃for 30 min.Vickers hardness of the sinter...Cubic boron nitride(CBN) composites starting with CBN-Al mixtures were sintered on WC-16 wt%Co substrate under static high pressure of 5.0 GPa at temperatures of 800 to 1 400℃for 30 min.Vickers hardness of the sintered samples increased with increasing CBN content and the highest hardness of 32.7 GPa was achieved for the CBN-5 wt%Al specimens sintered at 1 400℃.The reactions between CBN and Al started to occur at about 900℃and the reaction products strongly depended on the Al content,sintering temperature and Co diffused from the substrates according to the x-ray diffraction(XRD) observations.The CBN composite sintered at 1 200℃from a CBN-15 wt%Al mixture showed the best cutting performance.展开更多
The interannual and interdecadal varinbility of the Siberian High (SH) and the Aleutian Low (AL) from aspects of strength and location for the past one hundred years as well as their possible relations with temperatur...The interannual and interdecadal varinbility of the Siberian High (SH) and the Aleutian Low (AL) from aspects of strength and location for the past one hundred years as well as their possible relations with temperature changes over China's Mainland are investigated. The data sets used are the historical sea level pressure for 1871-1995 and surface air temperature (SAT) over China in the last 100 years. The results show that the SAT in different regions over China, central strength of the SH and the AL, the south-reaching latitude of the 1030 hPa contour of the SH and the pressure gradient between the SH and the AL experienced two obvious changes during this period. One occurred in the 1920s, with a more prominent one in the 1980s. These variations are closely linked with the change of winter temperature over China in the interdecadal timescale. In the last 50 years, there is a remarkable interannual correlation between the strength of Active Centers of Atmosphere (Acas) and the winter temperature of northern and eastern regions in China. The abrupt change of Acas in the 1980s is consistent with the rising of the SAT in China. Since the late 1980s, the atmospheric circulation is experiencing a remarkable modulation, which may cause the interdecadal transition of warming trend.展开更多
The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing ...The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.展开更多
Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specific...Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.展开更多
Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, le...Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.展开更多
The oxide dispersion strengthened Mo alloys(ODS-Mo)prepared by traditional ball milling and subsequent sintering technique generally possess comparatively coarse Mo grains and large oxide particles at Mo grain boundar...The oxide dispersion strengthened Mo alloys(ODS-Mo)prepared by traditional ball milling and subsequent sintering technique generally possess comparatively coarse Mo grains and large oxide particles at Mo grain boundaries(GBs),which obviously suppress the corresponding strengthening effect of oxide addition.In this work,the Y_(2)O_(3) and TiC particles were simultaneously doped into Mo alloys using ball-milling and subsequent low temperature sintering.Accompanied by TiC addition,the Mo-Y_(2)O_(3) grains are sharply refined from 3.12 to 1.36μm.In particular,Y_(2)O_(3) and TiC can form smaller Y-Ti-O-C quaternary phase particles(~230 nm)at Mo GBs compared to single Y_(2)O_(3) particles(~420 nm),so as to these new formed Y-Ti-O-C particles can more effectively pin and hinder GBs movement.In addition to Y-Ti-O-C particles at GBs,Y_(2)O_(3),TiOx,and TiCx nanoparticles(<100 nm)also exist within Mo grains,which is significantly different from traditional ODS-Mo.The appearance of TiOx phase indicates that some active Ti within TiC can adsorb oxygen impurities of Mo matrix to form a new strengthening phase,thus strengthening and purifying Mo matrix.Furthermore,the pure Mo,Mo-Y_(2)O_(3),and Mo-Y_(2)O_(3)-TiC alloys have similar relative densities(97.4%-98.0%).More importantly,the Mo-Y_(2)O_(3)-TiC alloys exhibit higher hardness(HV0.2(425±25))compared to Mo-Y_(2)O_(3) alloys(HV0.2(370±25)).This work could provide a relevant strategy for the preparation of ultrafine Mo alloys by facile ball-milling.展开更多
In order to constrain the crustal wave velocity structure in the southernTibetan crust and provide insight into the contribution of crustal composition, geothermal gradientand partial melting to the velocity structure...In order to constrain the crustal wave velocity structure in the southernTibetan crust and provide insight into the contribution of crustal composition, geothermal gradientand partial melting to the velocity structure, which is characterized by low average crustalvelocities and widespread presence of low-velocity zone(s), the authors model the crustal velocityand density as functions of depth corresponding to various heat flow values in light of velocitymeasurements at high temperature and high pressure. The modeled velocity and density are regarded ascomparison standards. The comparison of the standards with seismic observations in southern Tibetimplies that the predominantly felsic composition at high heat flow cannot explain the observedvelocity structure there. Hence, the authors are in favor of attributing low average crustalvelocities and low-velocity zone(s) observed in southern Tibet mainly to partial melting. Modelingbased on the experimental results suggests that a melting percentage of 7-12 could account for thelow-velocity zone(s).展开更多
The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling ra...The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling rate in the order of H (slow cooling in furnace) → L (cooling in furnace) → K (cooling in air). With the increase in cooling rate, the grain size and density decreased, the breakdown voltage (VImA/mm) increased, and the nonlinear coefficient (α) and leakage current (IL) exhibited extremum. The sample with the cooling type L showed the best properties with the breakdown voltage of 2650 V/ram, o:of 20.3, IL of 5.2 laA, and density of 5.42 g/cm^3. The barrier height (ФB), donor concentration (Nd), density of the interface states (Nd), and barrier width (ω) all exhibited extremum during the alteration in cooling rate. The different relative amount of Bi-rich phase and its distribution as well as the characteristic parameters of grain boundary, resulting from the alteration of cooling rate, led to the changes in the properties of varistor ceramics.展开更多
文摘A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD patterns indicate that the structures of high oxygen pressure RE_2CuO_4 (only for RE=Sm, Eu) samples are pure T′ phase, but when RE= Gd, Tb, Dy, Ho, Er, Tm, the structures turn to disorder. The magnetic anomalies that occurred at T^30 K are observed in high oxygen pressure RE_2CuO_4. It is found that the transition temperatures of weak ferromagnetic anomalies are nearly independent of the rare-earth components. Thus, the O-doping plays an important role in anomalous magnetic properties of RE_2CuO_(4+δ). The magnetic anomalies in RE_2CuO_4 are considered to be due to ferromagnetic clusters formed in the Cu-O plane after the oxygen doping.
文摘We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.
基金Supported by the National Basic Research Program of China under Grant No 2011CB808204the National Natural Science Foundation of China under Grant Nos 11374121 and 11404133
文摘The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with semiconducting transport properties, which is different from the semimetallic CaB6 single crystals. The temperaturedependent resistance measurement results show that before the structural phase transition at 12.3 GPa the high pressure first induces the metallization at 6.5 GPa for CAB6. Moreover, the phase diagram for CaB6 is drawn based on the investigated electric conducting properties and at least three different conducting phases are found even at moderate high pressure and low temperature, indicating that the electric nature of CaB6 is very sensitive to the environment.
文摘Polycrystalline cubic boron nitride(Pc BN)compacts,using the mixture of submicron cubic boron nitride(c BN)powder and hexagonal BN(h BN)powder as starting materials,were sintered at pressures of 6.5–10.0 GPa and temperature of1750℃without additives.In this paper,the sintering behavior and mechanical properties of samples were investigated.The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and h BN contents ranged from 20 vol.%to 24 vol.%,which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure.Transmission electron microscopy(TEM)analysis shows that after high pressure and high temperature(HPHT)treatments,the submicron c BN grains abounded with high-density nanotwins and stacking faults,and this contributed to the outstanding mechanical properties of Pc BN.The pure bulk Pc BN that was obtained at 7.7 GPa/1750℃possessed the outstanding properties,including a high Vickers hardness(~61.5 GPa),thermal stability(~1290℃in air),and high density(~3.46 g/cm^(3)).
基金Supported by the National Natural Science Foundation of China(No.50342017)by the Natural Science Foundation of Beijing(No.2042019)
文摘A regrown composite fiber was synthesized during the sintering of diamond under high pressure 5.8 GPa and high temperature 1500℃for 1 min,using 3wt%MWCNTs as additive.SEM observation of the fiber after alkali and acid treatment revealed that the outer layer of the fiber is composed of nano-polycrystalline diamond.EDS,XPS,XRD and Raman spectrum analysis further identified that the fiber is composed of MWCNTs in the inner part and nano-polycrystalline diamond in the out layer.It is proposed that the untransformed MWCNTs may act as a template for the regrown outer layer of nano diamond fiber under high pressure and high temperature.
文摘Ying-Qiong Basin is a typical high-temperature and overpressure basin, which is the main battlefield of oil and gas exploration in South China Sea and has made great breakthroughs in recent years. During drilling process in high pressure, the relationship between the deep and the pressure is directly related to the drilling safety and costs. In order to improve prediction accuracy, the VSP operation is carried out through the midway, and three points have been obtained: 1) The VSP has a higher accuracy of the interface depth in certain depth range of the drill bit. 2) When the low-frequency trend prediction is accurate before the drill bit, interval velocity of the VSP inversion is consistent with the formation velocity. 3) The VSP pressure forecast is based on the inversion layer velocity and under-compaction pressure. If the velocity prediction is not accurate, the pressure forecast must be erroneous. If the pressure has other sources, the formation pressure is not accurate even if the inversion velocity is accurate. The application scope and exploration effect of midway VSP operation are summarized and applied to Ledong 10-1 block in Yinggehai basin, which realize the breakthrough in the field of high temperature overpressure and provide the basis for other similar exploration areas to do VSP operation.
文摘Cubic boron nitride(CBN) composites starting with CBN-Al mixtures were sintered on WC-16 wt%Co substrate under static high pressure of 5.0 GPa at temperatures of 800 to 1 400℃for 30 min.Vickers hardness of the sintered samples increased with increasing CBN content and the highest hardness of 32.7 GPa was achieved for the CBN-5 wt%Al specimens sintered at 1 400℃.The reactions between CBN and Al started to occur at about 900℃and the reaction products strongly depended on the Al content,sintering temperature and Co diffused from the substrates according to the x-ray diffraction(XRD) observations.The CBN composite sintered at 1 200℃from a CBN-15 wt%Al mixture showed the best cutting performance.
基金the National Key Program for Developing Basic Sciences in China(No.G 1999043405) NSFC 49975023.
文摘The interannual and interdecadal varinbility of the Siberian High (SH) and the Aleutian Low (AL) from aspects of strength and location for the past one hundred years as well as their possible relations with temperature changes over China's Mainland are investigated. The data sets used are the historical sea level pressure for 1871-1995 and surface air temperature (SAT) over China in the last 100 years. The results show that the SAT in different regions over China, central strength of the SH and the AL, the south-reaching latitude of the 1030 hPa contour of the SH and the pressure gradient between the SH and the AL experienced two obvious changes during this period. One occurred in the 1920s, with a more prominent one in the 1980s. These variations are closely linked with the change of winter temperature over China in the interdecadal timescale. In the last 50 years, there is a remarkable interannual correlation between the strength of Active Centers of Atmosphere (Acas) and the winter temperature of northern and eastern regions in China. The abrupt change of Acas in the 1980s is consistent with the rising of the SAT in China. Since the late 1980s, the atmospheric circulation is experiencing a remarkable modulation, which may cause the interdecadal transition of warming trend.
基金Project supported by National Natural Science Foundation of China (50471045) Shanghai Nano-Technology PromotionCenter (0452nm026)
文摘The microstructure, electrical properties and density of ZnO-based varistor ceramics with different Er2O3 content prepared by high-energy ball milling (HEBM) and sintered at 800℃ were investigated. With increasing Er2O3 content, the ZnO grain size decreases due to the Er-rich phases inhibiting grain growth ; and nonlinear coefficient ( α ) decreases because of the decrease of barrier height (φB) The breakdown voltage (Eb) and density increase, whereas leakage current (IL) decreases with increasing Er2O3 content. The barrier height (φB), donor concentration (Nd), density of interface states (Ns) decrease and barrier width (ω) increases with increasing Er2O3 content due to acceptor effect of Er2O3 in varistor ceramics.
基金supported by the National Natural Science Foundation of China(No.41302131)the Special Fund for Fostering Major Projects at the China University of Mining and Technology(No.2014ZDP03)the Fundamental Research Funds for the Central Universities(No.2012QNB32)
文摘Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.
文摘Y2O3-doped ZnO-based varistor ceramics were prepared using high-energy ball milling (HEBM) and low-temperature sin- tering technique, with voltage-gradient of 1934-2197 V/mm, non-linear coefficients of 20.8-21.8, leakage currents of 0.59-1.04 μA, and densities of 5.46-5.57 g/cm3. With increasing Y2O3 content, the voltage-gradient increases because of the decrease of ZnO grain size; the non-linear coefficient and the leakage current improve but the density decreases because of more porosity; the donor con- centration and density of interface states decrease, whereas the barrier height and width increase because of the acceptor effect of Y2O3 in varistor ceramics.
基金financially supported by the National Natural Science Foundation of China (Nos. 52171044 and 51804218)the Innovation and Entrepreneurship Training Program for College Students in Fujian Province, China (No. S202111312029)
文摘The oxide dispersion strengthened Mo alloys(ODS-Mo)prepared by traditional ball milling and subsequent sintering technique generally possess comparatively coarse Mo grains and large oxide particles at Mo grain boundaries(GBs),which obviously suppress the corresponding strengthening effect of oxide addition.In this work,the Y_(2)O_(3) and TiC particles were simultaneously doped into Mo alloys using ball-milling and subsequent low temperature sintering.Accompanied by TiC addition,the Mo-Y_(2)O_(3) grains are sharply refined from 3.12 to 1.36μm.In particular,Y_(2)O_(3) and TiC can form smaller Y-Ti-O-C quaternary phase particles(~230 nm)at Mo GBs compared to single Y_(2)O_(3) particles(~420 nm),so as to these new formed Y-Ti-O-C particles can more effectively pin and hinder GBs movement.In addition to Y-Ti-O-C particles at GBs,Y_(2)O_(3),TiOx,and TiCx nanoparticles(<100 nm)also exist within Mo grains,which is significantly different from traditional ODS-Mo.The appearance of TiOx phase indicates that some active Ti within TiC can adsorb oxygen impurities of Mo matrix to form a new strengthening phase,thus strengthening and purifying Mo matrix.Furthermore,the pure Mo,Mo-Y_(2)O_(3),and Mo-Y_(2)O_(3)-TiC alloys have similar relative densities(97.4%-98.0%).More importantly,the Mo-Y_(2)O_(3)-TiC alloys exhibit higher hardness(HV0.2(425±25))compared to Mo-Y_(2)O_(3) alloys(HV0.2(370±25)).This work could provide a relevant strategy for the preparation of ultrafine Mo alloys by facile ball-milling.
基金supported by the Key Basic Research and Development Program of China(G19980407000)the National Natural Science Foundation of China(40072062)+1 种基金the Foundation of the Open Laboratory of Tectonophysics,China Seismological Bureauthe Post-Doctoral Grant of Ministry of Education,China.
文摘In order to constrain the crustal wave velocity structure in the southernTibetan crust and provide insight into the contribution of crustal composition, geothermal gradientand partial melting to the velocity structure, which is characterized by low average crustalvelocities and widespread presence of low-velocity zone(s), the authors model the crustal velocityand density as functions of depth corresponding to various heat flow values in light of velocitymeasurements at high temperature and high pressure. The modeled velocity and density are regarded ascomparison standards. The comparison of the standards with seismic observations in southern Tibetimplies that the predominantly felsic composition at high heat flow cannot explain the observedvelocity structure there. Hence, the authors are in favor of attributing low average crustalvelocities and low-velocity zone(s) observed in southern Tibet mainly to partial melting. Modelingbased on the experimental results suggests that a melting percentage of 7-12 could account for thelow-velocity zone(s).
基金This work is financially supported by the National Natural Science Foundation of China (No. 50471045)Shanghai Nano-technology Promotion Center (No. 0452nm026).
文摘The microstructure, electrical properties, and density of Dy2O3-doped ZnO-based varistor ceramics, prepared using high-energy ball milling (HEBM) and sintered at 800℃, were investigated by increasing the cooling rate in the order of H (slow cooling in furnace) → L (cooling in furnace) → K (cooling in air). With the increase in cooling rate, the grain size and density decreased, the breakdown voltage (VImA/mm) increased, and the nonlinear coefficient (α) and leakage current (IL) exhibited extremum. The sample with the cooling type L showed the best properties with the breakdown voltage of 2650 V/ram, o:of 20.3, IL of 5.2 laA, and density of 5.42 g/cm^3. The barrier height (ФB), donor concentration (Nd), density of the interface states (Nd), and barrier width (ω) all exhibited extremum during the alteration in cooling rate. The different relative amount of Bi-rich phase and its distribution as well as the characteristic parameters of grain boundary, resulting from the alteration of cooling rate, led to the changes in the properties of varistor ceramics.