Solar heating system is widely used recently. Heat storage equipment is the guarantee for steady performance of solar heating system. A design of latent heat storage exchanger with submerged coil was introduced with t...Solar heating system is widely used recently. Heat storage equipment is the guarantee for steady performance of solar heating system. A design of latent heat storage exchanger with submerged coil was introduced with the structure, working principle, and the main advantages. This heat exchanger was integrated into solar heating system as the heat storage equipment. Advantage comparison of the designed heat exchanger in solar heating system with hot water tank was carried out. The analysis results show that the latent heat storage exchanger is superior to hot water tank obviously. The heat exchanger performance parameters and variations of these parameters are got: (1) with the increase of phase change material (PCM) volume ratio, heat storage equipment volume ratio decreases; (2) heat storage efficiency has the same varying tendency with outdoor and air temperature; while the bigger PCM volume ratio is, the weaker the effect of outdoor air temperature on heat storage efficiency is; (3) heat storage capacity and heat storage efficiency increase together; when PCM volume ratio is big, heat storage efficiency is high and the system can begin operating effcienfly and quickly; (4) with the increase of heat storage capacity, life cyde operation cost (LCOC) of system increases gradually in high speed; but with the increase of PCM volume ratio, the difference between the two systems LCOCs becomes smaller and smaller; (5) the reasonable range of PCM volume ratio is 0.5 - 0.7. Temperature characteristic analysis shows that, with the filled PCM, heat storage medium temperature presents several segments at different time, under conditions of different heat storage capacity and different PCM state.展开更多
利用Aspen Plus对某炼油厂4.20 Mt/a催化裂化(FCC)装置进行建模预测。基于所建模型提取装置冷热物流数据,利用夹点技术对整个装置进行换热网络分析,发现原FCC装置吸收稳定系统存在能耗高、热公用工程消耗大,原料油混合温差大,轻柴油、...利用Aspen Plus对某炼油厂4.20 Mt/a催化裂化(FCC)装置进行建模预测。基于所建模型提取装置冷热物流数据,利用夹点技术对整个装置进行换热网络分析,发现原FCC装置吸收稳定系统存在能耗高、热公用工程消耗大,原料油混合温差大,轻柴油、重柴油及产品油浆高质低用,除盐水终温较低,除氧器蒸汽消耗量大等问题。通过优化稳定塔回流比、补充吸收剂流量等方法降低吸收稳定系统负荷,优化分馏塔中段取热比例多产高品位蒸汽,并利用夹点技术优化装置换热网络。结果表明:优化后,可节省蒸汽量27.3 t h,相当于节能16603 tOE a(1 tOE=41.8 GJ)或23757 tCE a(1 tCE=29.27 GJ),减少二氧化碳排放量76457 t a,节能效果优异;同时,改造还减少FCC装置外送热媒水量300 t h,装置内利用热媒水10.27 MW的余热,减少了热量损失。展开更多
文章提出了一种利用高温热泵回收冷却水余热制备中、高温热水的方案。通过建立简化的热力学模型,分析冷、热源温度对热泵单位制热量、单位压缩功及COP(Coefficient of Performance,能效比)值的影响。并从经济节能和环境保护两个方面进...文章提出了一种利用高温热泵回收冷却水余热制备中、高温热水的方案。通过建立简化的热力学模型,分析冷、热源温度对热泵单位制热量、单位压缩功及COP(Coefficient of Performance,能效比)值的影响。并从经济节能和环境保护两个方面进行了效益分析,结果表明:与传统的蒸汽加热制备热水相比,高温热泵回收冷却水余热制备中、高温热水的方案具有经济效益和环境效益,更符合节能减排要求。展开更多
基金National Natural Science Foundation of China(No.21106149)
文摘Solar heating system is widely used recently. Heat storage equipment is the guarantee for steady performance of solar heating system. A design of latent heat storage exchanger with submerged coil was introduced with the structure, working principle, and the main advantages. This heat exchanger was integrated into solar heating system as the heat storage equipment. Advantage comparison of the designed heat exchanger in solar heating system with hot water tank was carried out. The analysis results show that the latent heat storage exchanger is superior to hot water tank obviously. The heat exchanger performance parameters and variations of these parameters are got: (1) with the increase of phase change material (PCM) volume ratio, heat storage equipment volume ratio decreases; (2) heat storage efficiency has the same varying tendency with outdoor and air temperature; while the bigger PCM volume ratio is, the weaker the effect of outdoor air temperature on heat storage efficiency is; (3) heat storage capacity and heat storage efficiency increase together; when PCM volume ratio is big, heat storage efficiency is high and the system can begin operating effcienfly and quickly; (4) with the increase of heat storage capacity, life cyde operation cost (LCOC) of system increases gradually in high speed; but with the increase of PCM volume ratio, the difference between the two systems LCOCs becomes smaller and smaller; (5) the reasonable range of PCM volume ratio is 0.5 - 0.7. Temperature characteristic analysis shows that, with the filled PCM, heat storage medium temperature presents several segments at different time, under conditions of different heat storage capacity and different PCM state.
文摘利用Aspen Plus对某炼油厂4.20 Mt/a催化裂化(FCC)装置进行建模预测。基于所建模型提取装置冷热物流数据,利用夹点技术对整个装置进行换热网络分析,发现原FCC装置吸收稳定系统存在能耗高、热公用工程消耗大,原料油混合温差大,轻柴油、重柴油及产品油浆高质低用,除盐水终温较低,除氧器蒸汽消耗量大等问题。通过优化稳定塔回流比、补充吸收剂流量等方法降低吸收稳定系统负荷,优化分馏塔中段取热比例多产高品位蒸汽,并利用夹点技术优化装置换热网络。结果表明:优化后,可节省蒸汽量27.3 t h,相当于节能16603 tOE a(1 tOE=41.8 GJ)或23757 tCE a(1 tCE=29.27 GJ),减少二氧化碳排放量76457 t a,节能效果优异;同时,改造还减少FCC装置外送热媒水量300 t h,装置内利用热媒水10.27 MW的余热,减少了热量损失。
文摘文章提出了一种利用高温热泵回收冷却水余热制备中、高温热水的方案。通过建立简化的热力学模型,分析冷、热源温度对热泵单位制热量、单位压缩功及COP(Coefficient of Performance,能效比)值的影响。并从经济节能和环境保护两个方面进行了效益分析,结果表明:与传统的蒸汽加热制备热水相比,高温热泵回收冷却水余热制备中、高温热水的方案具有经济效益和环境效益,更符合节能减排要求。