期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Low Temperature Deposition of Titanium Nitride 被引量:1
1
作者 Wen, LS Huang, RF 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第4期289-293,共5页
Low temperature deposition (LTD) is an actual frontier in materials sicence and engineering, especially for thin film technology In this paper the fundamentals and processing of lew temperature deposition of TiN coati... Low temperature deposition (LTD) is an actual frontier in materials sicence and engineering, especially for thin film technology In this paper the fundamentals and processing of lew temperature deposition of TiN coating are reviewed. The prerequisites of a law temperature deposition process are enough good densification, hardness and adhesion of the deposited coating. The fundamentals Of low temperature deposition are Structure zone model and nonequilibrium plasma vapor growth in a combined DC and pulsed electromagnetic fields. namely a combination of a DC bias voltage superimposed by a DC pulsed bias voltage with variable frequency and peak voltage height. Low temperature deposition processing can be realized simply with only stationary eledric fields. However, sensitivity of the product quality to the process parameters is the main barrier of this processing in the way to mass production. Low temperature deposition processing using the effects of a combined DC and pulsed electromagnetic fields has attained some promising results for the future commercialization. But they need Still further Systematic and deep study The application of low temperature deposition processing is nOt limited in range of low melting substrate materials. It is also important for internal stress control, defect minimization, microstructure densification and pedermance improvement for coatings on broad spectrum of substrate materials as well as for different types of applications. 展开更多
关键词 CHEN low temperature deposition of Titanium Nitride
全文增补中
Solvents incubatedπ-πstacking in hole transport layer for perovskite-silicon 2-terminal tandem solar cells with 27.21%efficiency
2
作者 Qiaoyan Ma Jufeng Qiu +10 位作者 Yuzhao Yang Fei Tang Yilin Zeng Nanxi Ma Bohao Yu Feiping Lu Chong Liu Andreas Lambertz Weiyuan Duan Kaining Ding Yaohua Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期25-30,I0002,共7页
Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layer... Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layers to passivate the surface defects.In this study,the aromatic solvent with different substituent groups was used to regulate the conformation of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)am ine](PTAA)layer.As a result,the single-junction perovskite solar cell(PSC)gained a power conversion efficiency(PCE)of 20.63%,contributing to a 27.21%efficiency for monolithic perovskite/silicon(double-side polished)2-terminal tandem solar cell,by applying the alkyl aromatic solvent to enhance theπ-πstacking of PTAA molecular chains.The tandem solar cell can maintain 95%initial efficiency after aging over 1000 h.This study provides a universal approach for improving the photovoltaic performance of NiO_(x)/polymer-based perovskite/silicon tandem solar cells and other single junction inverted PSCs. 展开更多
关键词 Tandem solar cells low temperature deposition Hole transporting property π-πstacking Alkyl aromatic solvent
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部