Main observation and conclusion Two new uranium(VI)phosphonate compounds,namely K_(8)[N(C_(2)H_(5))_(4)]_(2)(UO_(2))_(17)(H_(2)O)_(4)[CH_(2)(PO_(3))_(2)]_(8)[CH_(2)(PO_(3))(PO_(3)H)]_(4)·16(H_(2)O)(1)and[N(C_(2)H...Main observation and conclusion Two new uranium(VI)phosphonate compounds,namely K_(8)[N(C_(2)H_(5))_(4)]_(2)(UO_(2))_(17)(H_(2)O)_(4)[CH_(2)(PO_(3))_(2)]_(8)[CH_(2)(PO_(3))(PO_(3)H)]_(4)·16(H_(2)O)(1)and[N(C_(2)H_(5))_(4)]_(4)(H_(3)O)_(2)(UO_(2))_(10)[CH_(2)(PO_(3))_(2)]_(5)[CH_(2)(PO_(3))(PO_(3)H)]_(2)·10H_(2)O(2),have been synthesized under mild hydro/solvothermal condition.The structural analysis of the two compounds reveals that they both contain all three typical coordination geometries of the U(VI)ions,including UO;tetragonal,UO,pentagonal,and UOg hexagonal bipyramids.Moreover,compound 1 displays a tempera-ture-induced single crystal to single crystal phase transformation as confirmed by the Single-crystal X-ray diffraction data collected at different temperatures.Temperature-dependent fluorescence spectra presented herein illustrate the perturbation of the electronic structure of uranyl centers.展开更多
基金the National Natural Science Foundation of China(21906113,21561018,21790374,and 22066014)the Priority Academic Pro-gram Development of Jiangsu Higher Education Institutions(PAPD)the Applied Basic Research Foundation of Yunnan Province(2017FH001-023).
文摘Main observation and conclusion Two new uranium(VI)phosphonate compounds,namely K_(8)[N(C_(2)H_(5))_(4)]_(2)(UO_(2))_(17)(H_(2)O)_(4)[CH_(2)(PO_(3))_(2)]_(8)[CH_(2)(PO_(3))(PO_(3)H)]_(4)·16(H_(2)O)(1)and[N(C_(2)H_(5))_(4)]_(4)(H_(3)O)_(2)(UO_(2))_(10)[CH_(2)(PO_(3))_(2)]_(5)[CH_(2)(PO_(3))(PO_(3)H)]_(2)·10H_(2)O(2),have been synthesized under mild hydro/solvothermal condition.The structural analysis of the two compounds reveals that they both contain all three typical coordination geometries of the U(VI)ions,including UO;tetragonal,UO,pentagonal,and UOg hexagonal bipyramids.Moreover,compound 1 displays a tempera-ture-induced single crystal to single crystal phase transformation as confirmed by the Single-crystal X-ray diffraction data collected at different temperatures.Temperature-dependent fluorescence spectra presented herein illustrate the perturbation of the electronic structure of uranyl centers.