期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of normalizing cooling process on microstructure and precipitates in low-temperature silicon steel 被引量:7
1
作者 李慧 冯运莉 +2 位作者 宋孟 梁精龙 苍大强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期770-776,共7页
Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared wi... Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared with the hot-rolled plate by optical microscopy (OM), transmission electron microscopy (TEM), and energy dispersive spectrometry (EDS). The results show that, the surface microstructure is uniform, the proportion of recrystallization in matrix increases, and the banding textures are narrowed; the precipitates, whose quantity in normalized plate is more than that in hot-rolled plate greatly, are mainly A1N, MnS, composite precipitates (Cu,Mn)S and so on. Normalizing technology with a temperature of 1120 ℃, holding for 3 min, and a two-stage cooling is a most advantaged method to obtain oriented silicon steel with sharper Goss texture and higher magnetic properties, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness. The normalizing technology with the two-stage cooling is the optimum process, which can generate more fine precipitates dispersed over the matrix, and be beneficial for finished products to get higher magnetic properties. 展开更多
关键词 low temperature grain-oriented silicon steel normalizing cooling process MICROSTRUCTURE PRECIPITATE magnetic property
下载PDF
Effects of Mn and Cr contents on microstructures and mechanical properties of low temperature bainitic steel 被引量:5
2
作者 Hui Guo Peng Zhou +3 位作者 Ai-min Zhao Chao Zhi Ran Ding Jia-xing Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第3期290-295,共6页
The effects of Mn and Cr contents on bainitic transformation kinetics,microstructures and mechanical properties of high-carbon low alloy steels after austempered at 230,300 and 350 ℃ were determined by dilatometry,op... The effects of Mn and Cr contents on bainitic transformation kinetics,microstructures and mechanical properties of high-carbon low alloy steels after austempered at 230,300 and 350 ℃ were determined by dilatometry,optical microscopy,scanning electron microscopy,X-ray diffraction and tensile tests. The results showed that Mn and Cr can extend bainitic incubation period and completion time,and with the increase of Mn and Cr content,the bainitic ferrite plate thickness decreased and the volume fraction of retained austenite increased. TRIP( transformation induced plasticity) effect was observed during tensile testing which improved the overall mechanical property. The increase of Mn concentration can improve the strength to a certain extent,but reduce the ductility. The increase of Cr concentration can improve the ductility of bainitic steels which transformed at a low temperature. The low temperature bainitic steel austempered at 230 ℃ exhibited excellent mechanical properties with ultimate tensile strength of( 2146 ± 11) MPa and total elongation of( 12. 95 ± 0. 15) %. 展开更多
关键词 low temperature bainitic steel KINETICS Retained austenite TRIP effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部