Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the...Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the context of a possible severe threat of large-scale disconnection caused by wind farms.Currently,research on the LVRT of wind farms mainly focuses on suppressing rotor current and providing reactive current support,while the impact of active current output on LVRT performance has not been thoroughly discussed.This paper studies and reveals the relation-ship between the limit of reactive current output and the depth of voltage drop during LVRT for doubly-fed induction generator(DFIG)based wind farms.Specifically,the reactive current output limit of the grid-side converter is inde-pendent of the depth of voltage drop,and its limit is the maximum current allowed by the converter,while the reac-tive current output limit of the DFIG stator is a linear function of the depth of voltage drop.An optimized scheme for allocating reactive current among the STATCOM,DFIG stator,and grid-side converter is proposed.The scheme maximizes the output of active current while satisfying the standard requirements for reactive current output.Com-pared to traditional schemes,the proposed LVRT optimization strategy can output more active power during the LVRT period,effectively suppressing the rate of rotor speed increase,and improving the LVRT performance and fault recov-ery capability of wind farms.Simulation results verify the effectiveness of the proposed scheme.展开更多
To maximize conversion efficiency,photovoltaic(PV)systems generally operate in the maximum power point tracking(MPPT)mode.However,due to the increasing penetra tion level of PV systems,there is a need for more develop...To maximize conversion efficiency,photovoltaic(PV)systems generally operate in the maximum power point tracking(MPPT)mode.However,due to the increasing penetra tion level of PV systems,there is a need for more developed control functions in terms of frequency support services and voltage control to maintain the reliability and stability of the power grid.Therefore,flexible active power control is a manda tory task for grid-connected PV systems to meet part of the grid requirements.Hence,a significant number of flexible pow er point tracking(FPPT)algorithms have been introduced in the existing literature.The purpose of such algorithms is to real ize a cost-effective method to provide grid support functional ities while minimizing the reliance on energy storage systems.This paper provides a comprehensive overview of grid support functionalities that can be obtained with the FPPT control of PV systems such as frequency support and volt-var control.Each of these grid support functionalities necessitates PV sys tems to operate under one of the three control strategies,which can be provided with FPPT algorithms.The three control strate gies are classified as:①constant power generation control(CP GC),②power reserve control(PRC),and③power ramp rate control(PRRC).A detailed discussion on available FPPT algo rithms for each control strategy is also provided.This paper can serve as a comprehensive review of the state-of-the-art FPPT algorithms that can equip PV systems with various grid support functionalities.展开更多
Sufficient fault ride-through(FRT)of large wind power plants(WPPs)is essential for the operation security of transmission system.The majority of studies on FRT do not include all disturbances originating in the transm...Sufficient fault ride-through(FRT)of large wind power plants(WPPs)is essential for the operation security of transmission system.The majority of studies on FRT do not include all disturbances originating in the transmission system or the disturbances irrelevant to the operation security.Based on the knowledge of power quality,this paper provides a guide to stakeholders in different aspects of FRT for wind turbines(WTs)and WPPs.This paper details the characteristics of the most common disturbances originated in the transmission system,how they propagate to the WT terminals,and how they impact the dynamic behavior of a large WPP.This paper shows that the details of the voltage disturbances,not only in the transmission system,but also at the WT terminals,should be taken into consideration.Moreover,a detailed representation or characterization of voltage dips is important for FRT studies,despite that the simplified models used in the literature are insufficient.This paper strongly recommends that distinct events and additional characteristics such as the phase-angle jump and oscillations in the transition segments should be considered in FRT analysis.展开更多
基金supported by the National Natural Science Foundation of China 52177108。
文摘Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the context of a possible severe threat of large-scale disconnection caused by wind farms.Currently,research on the LVRT of wind farms mainly focuses on suppressing rotor current and providing reactive current support,while the impact of active current output on LVRT performance has not been thoroughly discussed.This paper studies and reveals the relation-ship between the limit of reactive current output and the depth of voltage drop during LVRT for doubly-fed induction generator(DFIG)based wind farms.Specifically,the reactive current output limit of the grid-side converter is inde-pendent of the depth of voltage drop,and its limit is the maximum current allowed by the converter,while the reac-tive current output limit of the DFIG stator is a linear function of the depth of voltage drop.An optimized scheme for allocating reactive current among the STATCOM,DFIG stator,and grid-side converter is proposed.The scheme maximizes the output of active current while satisfying the standard requirements for reactive current output.Com-pared to traditional schemes,the proposed LVRT optimization strategy can output more active power during the LVRT period,effectively suppressing the rate of rotor speed increase,and improving the LVRT performance and fault recov-ery capability of wind farms.Simulation results verify the effectiveness of the proposed scheme.
基金supported in part by the Future Battery Industries Cooperative Research Center(www.fbicrc.com.au)as part of the Australian Government’s CRC Program(www.business.gov.au),which supports industry-led collaborations between industry,researchers and the community.
文摘To maximize conversion efficiency,photovoltaic(PV)systems generally operate in the maximum power point tracking(MPPT)mode.However,due to the increasing penetra tion level of PV systems,there is a need for more developed control functions in terms of frequency support services and voltage control to maintain the reliability and stability of the power grid.Therefore,flexible active power control is a manda tory task for grid-connected PV systems to meet part of the grid requirements.Hence,a significant number of flexible pow er point tracking(FPPT)algorithms have been introduced in the existing literature.The purpose of such algorithms is to real ize a cost-effective method to provide grid support functional ities while minimizing the reliance on energy storage systems.This paper provides a comprehensive overview of grid support functionalities that can be obtained with the FPPT control of PV systems such as frequency support and volt-var control.Each of these grid support functionalities necessitates PV sys tems to operate under one of the three control strategies,which can be provided with FPPT algorithms.The three control strate gies are classified as:①constant power generation control(CP GC),②power reserve control(PRC),and③power ramp rate control(PRRC).A detailed discussion on available FPPT algo rithms for each control strategy is also provided.This paper can serve as a comprehensive review of the state-of-the-art FPPT algorithms that can equip PV systems with various grid support functionalities.
文摘Sufficient fault ride-through(FRT)of large wind power plants(WPPs)is essential for the operation security of transmission system.The majority of studies on FRT do not include all disturbances originating in the transmission system or the disturbances irrelevant to the operation security.Based on the knowledge of power quality,this paper provides a guide to stakeholders in different aspects of FRT for wind turbines(WTs)and WPPs.This paper details the characteristics of the most common disturbances originated in the transmission system,how they propagate to the WT terminals,and how they impact the dynamic behavior of a large WPP.This paper shows that the details of the voltage disturbances,not only in the transmission system,but also at the WT terminals,should be taken into consideration.Moreover,a detailed representation or characterization of voltage dips is important for FRT studies,despite that the simplified models used in the literature are insufficient.This paper strongly recommends that distinct events and additional characteristics such as the phase-angle jump and oscillations in the transition segments should be considered in FRT analysis.