The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship...The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship between drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of i mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13% to 22.30%.展开更多
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati...This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.展开更多
This paper presents effects of design factors on mechanical performance of Vertical Axis Wind Turbines (VAWTs), and an experimental investigation of optimal VAWT performance under low wind speed conditions in Thailand...This paper presents effects of design factors on mechanical performance of Vertical Axis Wind Turbines (VAWTs), and an experimental investigation of optimal VAWT performance under low wind speed conditions in Thailand. Design factors include types of wind turbines, number of blades, types of materials, height-to-radius ratios, and design modifications. Potential VAWT models with different design factors are numerically analyzed within a virtual wind tunnel at various wind speeds by utilizing XflowTM?Computational Fluid Dynamics (CFD) software. The performance curves of each VAWT are obtained as plots of power coefficients against tip speed ratios. It is found that the type of wind turbine, number of blades, and height-to-radius ratio have significant effects on mechanical performance whereas types of materials result in shifts of operating speeds of VAWTs. Accordingly, an optimal VAWT prototype is developed to operate under actual low speed wind conditions. The performance curve from experimental results agrees with the CFD results. The proposed methodology can be used in the computer design of VAWTs to improve mechanical performance before physical fabrication.展开更多
Wind-driven power harvestings attract attentions since their target wind speeds are quite low less than the so-called cut-in wind speed, which is generally recognized as around 3 m/s. The extant power harvestings driv...Wind-driven power harvestings attract attentions since their target wind speeds are quite low less than the so-called cut-in wind speed, which is generally recognized as around 3 m/s. The extant power harvestings driven by wind-induced-air-column-resonations (i.e. acoustic-pressures) are still lacking simplicity, scale flexibility and solid strategies for practical applications. Therefore, the piezoelectric power harvesters via acoustic-pressures driven by low-speedwind-forces with resonating-tubes and wind-collectors were invented so as to complement all the lacks. The wind-collector as well as the resonating-tube contributed to upraise the power harvesting density. The champion power harvesting density of 19.5 nW/dm2 could be procured at 2.3 m/s of an artificial wind and the optimal resonating-tube and wind-collector. Power harvesting proofs from the natural wind with low mean speeds down to about 0.6 m/s were successfully obtained. The cut-in wind speed of the prototype piezoelectric power harvester was found to be quite low as about 0.4 m/s, signifying its ubiquity. Finally, a multi-bundle pendant-type piezoelectric power harvester was specifically presented together with professing the solid and multiple strategies for practical applications.展开更多
Darrieus wind turbines are simple lift based machines with exceptionally high efficiencies in terms of power coefficient compared to similar drag based vertical axis turbines. However, in low Reynolds numbers, a notab...Darrieus wind turbines are simple lift based machines with exceptionally high efficiencies in terms of power coefficient compared to similar drag based vertical axis turbines. However, in low Reynolds numbers, a notable performance loss was reported. As a potential solution, truncated NACA 0018 airfoil (NACA 0018TC-39) has been introduced with baseline cavity modification to achieve better start-up characteristics and to enhance the low wind speed performance. The baseline cavity will provide an additional benefit of reverse drag at low TSR which is obligatory for low wind speed start-up. Numerical optimization has been carried out on the conceived airfoil NACA 0018TC-39 to find out the effective truncation percentage in terms of the chord. The numerical study has been extended to compare NACA 0018 and NACA 0018TC-39 airfoil for their aerodynamic performances in terms of lift, drag coefficients and separation characteristics. The NACA 0018TC-39 airfoil was incorporated within a non-swept straight bladed Darrieus turbine miniature to experimentally evaluate the performance in terms of dynamic power coefficient, dynamic torque coefficient and static torque coefficient and compared with conventional NACA 0018 airfoil at six different Reynolds numbers 178917, 193827, 208737, 223646, 238556 and 268376. The experimental contrast implied that NACA 0018TC-39 airfoil turbine yielded almost double power coefficients at low Reynolds number compared to conventional NACA 0018 airfoil without hampering its performance at higher Reynolds number.展开更多
For offshore hydraulic drive wind turbines,the problems of unsatisfactory speed control and low efficiency at low wind speeds are targeted.A low-speed high-torque radial piston pump is designed to replace the traditio...For offshore hydraulic drive wind turbines,the problems of unsatisfactory speed control and low efficiency at low wind speeds are targeted.A low-speed high-torque radial piston pump is designed to replace the traditional fixed pump with a particular focus on its low-speed performance.The pump is characterized by small internal leakage at low wind speeds and high volumetric efficiency,which is beneficial to improve the power generation efficiency of the system.A new linear control method based on the PID algorithm and feedforward compensation was proposed to obtain the constant speed output control of variable motor at low wind speed.With the model for wind turbine and fixed pump-variable motor main drive system,the system was simulated and experimentally proved to verify the feasibility and anti-interference performance of the system control method at low wind speeds.A promising outcome was obtained on the response characteristics of system power and efficiency at low wind speeds.This can be a powerful technical support for the normal ustility of hydraulic drive wind turbines.展开更多
针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方...针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方法首先将待检测距离单元的数据从空域、时域以及空时域进行信号对消处理;然后将处理后的数据矩阵描述为空时自回归(Autoregression,AR)模型并估计模型参数;再通过构造与杂波子空间正交的空间来实现对杂波的抑制,最后通过提取待检测单元的最大多普勒频率来估计风场速度。根据仿真结果显示,该方法有效地实现了地杂波抑制,并且能够精确估计风速。展开更多
基金support provided by the National Key Grant Program of Basic(Grant No.2002CCA01200)the National High Technol-ogy Research and Development Program of China(863 Program)(Grant No.2003AA305080)+1 种基金the Key Project of Chinese Ministry of Education(No,02089)the Natural Science Foundation of Jilin Province(No.20040703-1).
文摘The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship between drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of i mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13% to 22.30%.
文摘This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.
文摘This paper presents effects of design factors on mechanical performance of Vertical Axis Wind Turbines (VAWTs), and an experimental investigation of optimal VAWT performance under low wind speed conditions in Thailand. Design factors include types of wind turbines, number of blades, types of materials, height-to-radius ratios, and design modifications. Potential VAWT models with different design factors are numerically analyzed within a virtual wind tunnel at various wind speeds by utilizing XflowTM?Computational Fluid Dynamics (CFD) software. The performance curves of each VAWT are obtained as plots of power coefficients against tip speed ratios. It is found that the type of wind turbine, number of blades, and height-to-radius ratio have significant effects on mechanical performance whereas types of materials result in shifts of operating speeds of VAWTs. Accordingly, an optimal VAWT prototype is developed to operate under actual low speed wind conditions. The performance curve from experimental results agrees with the CFD results. The proposed methodology can be used in the computer design of VAWTs to improve mechanical performance before physical fabrication.
文摘Wind-driven power harvestings attract attentions since their target wind speeds are quite low less than the so-called cut-in wind speed, which is generally recognized as around 3 m/s. The extant power harvestings driven by wind-induced-air-column-resonations (i.e. acoustic-pressures) are still lacking simplicity, scale flexibility and solid strategies for practical applications. Therefore, the piezoelectric power harvesters via acoustic-pressures driven by low-speedwind-forces with resonating-tubes and wind-collectors were invented so as to complement all the lacks. The wind-collector as well as the resonating-tube contributed to upraise the power harvesting density. The champion power harvesting density of 19.5 nW/dm2 could be procured at 2.3 m/s of an artificial wind and the optimal resonating-tube and wind-collector. Power harvesting proofs from the natural wind with low mean speeds down to about 0.6 m/s were successfully obtained. The cut-in wind speed of the prototype piezoelectric power harvester was found to be quite low as about 0.4 m/s, signifying its ubiquity. Finally, a multi-bundle pendant-type piezoelectric power harvester was specifically presented together with professing the solid and multiple strategies for practical applications.
文摘Darrieus wind turbines are simple lift based machines with exceptionally high efficiencies in terms of power coefficient compared to similar drag based vertical axis turbines. However, in low Reynolds numbers, a notable performance loss was reported. As a potential solution, truncated NACA 0018 airfoil (NACA 0018TC-39) has been introduced with baseline cavity modification to achieve better start-up characteristics and to enhance the low wind speed performance. The baseline cavity will provide an additional benefit of reverse drag at low TSR which is obligatory for low wind speed start-up. Numerical optimization has been carried out on the conceived airfoil NACA 0018TC-39 to find out the effective truncation percentage in terms of the chord. The numerical study has been extended to compare NACA 0018 and NACA 0018TC-39 airfoil for their aerodynamic performances in terms of lift, drag coefficients and separation characteristics. The NACA 0018TC-39 airfoil was incorporated within a non-swept straight bladed Darrieus turbine miniature to experimentally evaluate the performance in terms of dynamic power coefficient, dynamic torque coefficient and static torque coefficient and compared with conventional NACA 0018 airfoil at six different Reynolds numbers 178917, 193827, 208737, 223646, 238556 and 268376. The experimental contrast implied that NACA 0018TC-39 airfoil turbine yielded almost double power coefficients at low Reynolds number compared to conventional NACA 0018 airfoil without hampering its performance at higher Reynolds number.
基金supported by Chongqing Natural Science Foundation(cstc2019jcyj⁃msxm2000),Chongqing University of Science and Technology Graduate Science and Technology Innovation Project(JXXY201901)。
文摘For offshore hydraulic drive wind turbines,the problems of unsatisfactory speed control and low efficiency at low wind speeds are targeted.A low-speed high-torque radial piston pump is designed to replace the traditional fixed pump with a particular focus on its low-speed performance.The pump is characterized by small internal leakage at low wind speeds and high volumetric efficiency,which is beneficial to improve the power generation efficiency of the system.A new linear control method based on the PID algorithm and feedforward compensation was proposed to obtain the constant speed output control of variable motor at low wind speed.With the model for wind turbine and fixed pump-variable motor main drive system,the system was simulated and experimentally proved to verify the feasibility and anti-interference performance of the system control method at low wind speeds.A promising outcome was obtained on the response characteristics of system power and efficiency at low wind speeds.This can be a powerful technical support for the normal ustility of hydraulic drive wind turbines.
文摘针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方法首先将待检测距离单元的数据从空域、时域以及空时域进行信号对消处理;然后将处理后的数据矩阵描述为空时自回归(Autoregression,AR)模型并估计模型参数;再通过构造与杂波子空间正交的空间来实现对杂波的抑制,最后通过提取待检测单元的最大多普勒频率来估计风场速度。根据仿真结果显示,该方法有效地实现了地杂波抑制,并且能够精确估计风速。