With the development of technology for earthquake resistant,the research of the low yield point(LYP) steel which used for the fabrication of energy dissipation damper were paid more and more attention.The common studi...With the development of technology for earthquake resistant,the research of the low yield point(LYP) steel which used for the fabrication of energy dissipation damper were paid more and more attention.The common studies of the low yield point steel is mainly about the performance with constant amplitude and constant frequency.The low cycle fatigue properties of low yield piont steel were studied by series of test with continuous varying amplitude and varying frequency with the materials testing system by us.The test results showed that low yield point steel of Baosteel have excellent low cycle fatigue properties,which meet the requirement for steel used for the fabrication of energy dissipation damper completely.The low cycle fatigue performance of low yield point steel of Baosteel mainly depended on the amplitude in test.And the effect of varying frequency for the low yield point steel was more less than varying amplitude.展开更多
To develop a high performance buckling-restrained brace (BRB) with less weight, an innovative type of the BRB with transverse rib restraints is proposed and studied through experiment. Three BRB specimens are cyclic...To develop a high performance buckling-restrained brace (BRB) with less weight, an innovative type of the BRB with transverse rib restraints is proposed and studied through experiment. Three BRB specimens are cyclically loaded in the investigation. Specimen 1 adopts a Q235 core member and transverse rib restraints. Specimen 2 adopts a LYP160 low yield point steel core member and transverse rib restraints. Specimen 3 adopts a LYP160 low yield point steel core member and mortar restraint. The experimental results indicate that the transverse rib restraining mode can provide sufficient lateral stiffness for the core member and effectively restrain its buckling. The BRB specimens with a LYP160 core member exhibit better hysteretic performance and energy dissipation capacity than the specimens with a Q235 core member.展开更多
文摘With the development of technology for earthquake resistant,the research of the low yield point(LYP) steel which used for the fabrication of energy dissipation damper were paid more and more attention.The common studies of the low yield point steel is mainly about the performance with constant amplitude and constant frequency.The low cycle fatigue properties of low yield piont steel were studied by series of test with continuous varying amplitude and varying frequency with the materials testing system by us.The test results showed that low yield point steel of Baosteel have excellent low cycle fatigue properties,which meet the requirement for steel used for the fabrication of energy dissipation damper completely.The low cycle fatigue performance of low yield point steel of Baosteel mainly depended on the amplitude in test.And the effect of varying frequency for the low yield point steel was more less than varying amplitude.
基金The National Key Technology R&D Program of China during the12th Five-Year Plan Period(No.2012BAJ13B01)the Science and Technology Program of the Ministry of Housing and UrbanRural Development(No.2011-K2-3)+1 种基金the Science and Technology Foundation of Southeast University(No.9205000034)the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.CE01-2-09)
文摘To develop a high performance buckling-restrained brace (BRB) with less weight, an innovative type of the BRB with transverse rib restraints is proposed and studied through experiment. Three BRB specimens are cyclically loaded in the investigation. Specimen 1 adopts a Q235 core member and transverse rib restraints. Specimen 2 adopts a LYP160 low yield point steel core member and transverse rib restraints. Specimen 3 adopts a LYP160 low yield point steel core member and mortar restraint. The experimental results indicate that the transverse rib restraining mode can provide sufficient lateral stiffness for the core member and effectively restrain its buckling. The BRB specimens with a LYP160 core member exhibit better hysteretic performance and energy dissipation capacity than the specimens with a Q235 core member.