The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel indu...The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.展开更多
Against the backdrop of global climate change and China’s“dual carbon”goals,the green transformation of the construction industry is imperative,and completing the transformation requires many dual carbon talents to...Against the backdrop of global climate change and China’s“dual carbon”goals,the green transformation of the construction industry is imperative,and completing the transformation requires many dual carbon talents to support it.This article focuses on the construction engineering technology major in higher vocational education.It explores in depth the specific requirements for construction engineering technology talents in terms of professional knowledge,vocational skills,and literacy under the dual carbon mode.Based on this,corresponding dual carbon talent training courses are proposed,aiming to provide theoretical support and practical guidance for cultivating high-quality dual carbon talents that meet the needs of the new era.展开更多
Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2)...Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.展开更多
In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-g...In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.展开更多
The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic pe...The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic perspective,the seriousness of rural water quality,soil and atmospheric pollution in Xiangxiang,Xiangtan and the surrounding areas in Shaoshan irrigated area was revealed.The control measure which was 'four-dimensional pollution in the city and countryside'—— low-carbon-high-value agriculture and the technology innovation was proposed.The low-carbon-high-value technology innovation industrialization demonstration in three parts which included the pre-production,mid-production and post-production deep-processing of cultivation and breeding industry in the ecological cyclic agricultural garden in Shaoshan irrigated area was the driving force.We tried to propel the low-carbon ecological cultivation and breeding industry which included the paddy rice,grass,tree,medicinal herbs and pig,cow,chick,duck,fish.We wanted to relieve the structural unbalance of previous cultivation and breeding industry,'cheap grain hurting the farmers' and the short-leg problem of social-economic-ecological benefit.The results showed that the low-carbon-high-value agricultural system was a poly-generation technology system which promoted the multi-level and grading utilization,saved the energy,reduced the consumption and cleaned the production based on the ecology.展开更多
The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between developme...The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between development level of agricultural science and technology and development level of low-carbon agriculture in China. The results show that the correlation between the two is prominent; the number of agricultural science and technology talents, the number of agricultural science and technology patents, and the number of agricultural science and technology input are three major factors influencing the development of low-carbon agriculture. On this basis, I propose to take further effective measures, and put forth corresponding recommendations, in order to improve the level of agricultural science and technology.展开更多
China's technological efforts to tackle climate change have lasted for many years. It is necessary to test the effect of these efforts with quantitative method. To be exact, whether and how China's low-carbon ...China's technological efforts to tackle climate change have lasted for many years. It is necessary to test the effect of these efforts with quantitative method. To be exact, whether and how China's low-carbon technology innovation responds to climate change should be tested. Based on the2004-2015 panel data of 30 provinces in China, we use the method of ESDA analyzing the spatial correlation of China's low-carbon innovation technology. Furthermore, we use the spatial Durbin model empirically analyzing the spatial spillover effects. The results obtained are as follows: first,supply and demand of Chinese low-carbon innovation has some deviation in the spatial distribution. The low-carbon technology innovation as the supply factor shows the characteristics of expanding from the east to the west. Innovation in eastern China has always been the most active, but innovative activities in the middle and western China are gradually decreased.However, carbon emissions have the characteristics of moving westward, implying the change of technology demand different from technology supply. Second, China's low-carbon innovation actively responds to the trend of climate change, indicating China's technological efforts have paid off. However, the spatial spillover effects are not significant, showing that the efforts in each region of China still work for himself. Third, environmental regulation and market pull are important factors for low-carbon technology innovation. Among them, both supporting policy and inhibitory policy have significant impact on the local low-carbon technology innovation, but no significant spatial spillover effects. It shows that environmental policies in different regions are competitive and lack of demonstration effects. Economic growth and export as market pull have higher level of effect on low-carbon technology innovation for both local and adjacent areas.Some policy implications are proposed based on these results finally.展开更多
After the reform and opening up,China's economy has developed rapidly.But in the process of economic development,the ecological environment has also paid a huge price.The destruction of the ecological environment ...After the reform and opening up,China's economy has developed rapidly.But in the process of economic development,the ecological environment has also paid a huge price.The destruction of the ecological environment directly affects survival and development of people.Therefore,it is necessary to strengthen environmental governance.Everyone has also begun to focus on low-carbon development.The construction industry is a serious waste of building materials with large energy dissipation.Therefore it is also a key industry for low-carbon transformation.This article mainly analyzes low-carbon building design technology and studies specific development strategies.展开更多
With the issue of climate change increasingly restricting the sustainable development of society, people must realize that we must control atmospheric concentrations of greenhouse gases at a certain level. However, th...With the issue of climate change increasingly restricting the sustainable development of society, people must realize that we must control atmospheric concentrations of greenhouse gases at a certain level. However, the traditional model of economic development will lead to human demand for energy continuing to grow, followed by a growth in emissions of carbon dioxide. Obviously we must ensure that there is rapid economic development, but also to protect the human living environment, which is a very sharp contradiction. A good solution to this conflict is to take a new model of development --- a low-carbon economy. The so-called low-carbon economy refers to the reduction of greenhouse gas emissions, the application of new technologies, new materials and new practices, etc., through improvements, optimization or innovative production and business activities, to achieve the maximum degree of reduction of greenhouse gas emissions, and the formation of a new economic development model, the goal is to mitigate climate change and promote sustainable human development. On how to develop a low-carbon economy, domestic and foreign scholars have been studied from many angles, one of which is a consensus to reduce greenhouse gas emissions through the development and use of low-carbon technologies.展开更多
The paper introduced low-carbon economy and low-carbon technology, and proposed the de-tailed technical measures of low-carbon build-ing technology. Moreover, it has quantitatively calculated the “implicit” CO2 emis...The paper introduced low-carbon economy and low-carbon technology, and proposed the de-tailed technical measures of low-carbon build-ing technology. Moreover, it has quantitatively calculated the “implicit” CO2 emission of C40 and C50 concrete columns, aluminium curtain wall, wall paintings and common floor decora-tion materials. The calculation results show that it is preferable to use high strength concrete, reduce the usage of aluminium materials and use wooden floor according to location. The paper can be a reference for quantitative meas-urement to the low-carbon technology and en-ergy efficiency.展开更多
It is an important and unique approach of achieving sustainable urban development to save and use energy intensively, reduce carbon emission, and take the low-carbon development road. Taking Gaochun Zijin Science and ...It is an important and unique approach of achieving sustainable urban development to save and use energy intensively, reduce carbon emission, and take the low-carbon development road. Taking Gaochun Zijin Science and Technology Special Community for example, this paper introduced planning measures for building a low-carbon city, including building a green network, compound utilization of urban spaces, establishing green transportation, using renewable resources, development of green architecture, so as to provide references for the future researches on the low-carbon urban development.展开更多
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev...Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In t...Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In this paper, the author constructs an identical equation for carbon emission, based on the economic aggregate, the economic structure, the efficiency of energy utilization, the structure of energy consumption, and the coefficient of carbon emission; by applying to LMDI decomposition technology, the author analyzes the carbon emission of China from 1995 to 2007 at industrial level and regional level. The results show that the expansion of economic aggregate is the main reason for China' s rapidly increasing carbon emission and the increase of energy utilization efficiency is the key factor that can hold back the increase of carbon emission. In addition, the change of industrial structure or regional structure and the change of traditional energy structure have limited influence on the carbon emission, and their potentials have not yet been exploited. At the end of this paper, the author proposes the efforts that China should make to reduce carbon emission.展开更多
On the basis of existing research,carbon emission reduction technologies in production,processing,packaging,transportation and storage of the food system were summarized,and their application effects were analyzed.In ...On the basis of existing research,carbon emission reduction technologies in production,processing,packaging,transportation and storage of the food system were summarized,and their application effects were analyzed.In view of the inherent inadequacy of carbon emission reduction technologies in Chinese food system,starting from carbon labeling technologies and ESG system of the food industry,the unsoundness of the carbon emission reduction evaluation system and the high cost of related technology promotion,countermeasures such as strengthening top-level design,encouraging and supporting the development of new carbon emission reduction technologies,and improving carbon emission reduction technology subsidies were proposed by drawing on domestic and international experiences.展开更多
Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,t...Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,this paper constructs a basic regression model to study the"carbon reduction"effect,mechanism of action,and heterogeneity of green finance.The study finds that:the development of green finance significantly inhibits carbon emissions and has an obvious"carbon reduction"effect;green technology innovation has a mediating effect on the carbon emission reduction effect of green finance;in regions with a high level of economic development or a high degree of marketization,the"carbon reduction"effect of green finance is significant.展开更多
It is essential that China follows a low carbon pathway, in which technology plays a key role in the future economy and social development. Based on the Integrated Policy Assessment Model for China, this paper analyze...It is essential that China follows a low carbon pathway, in which technology plays a key role in the future economy and social development. Based on the Integrated Policy Assessment Model for China, this paper analyzes a technology development roadmap for China to achieve a low carbon scenario. The results show that there are plenty of potential and opportunities for China to move towards a low carbon society when given enhanced and accelerated applications and expansions of key low carbon technologies. Strong policy and measure supports from all sectors in China are needed to achieve this goal.展开更多
Space technology is a powerful tool for climate research. Satellite data improve knowledge of the human impact on the Planet’s physical geography. Similarly, remote sensing technology enhances understanding of the hu...Space technology is a powerful tool for climate research. Satellite data improve knowledge of the human impact on the Planet’s physical geography. Similarly, remote sensing technology enhances understanding of the human impact on rising global carbon emissions. However, so far satellites have been principally limited to measuring the carbon emissions of cities from space. Standing alone, satellite technology is incapable of advancing the goal of decarbonisation. This will be achieved only if cities create local methodologies that significantly enhance the carbon reduction process. There exists enormous potential to bridge remote sensing for earth observation and global environmental change with local action towards decarbonised urban renewal and redevelopment. Satellite remote sensing has the ability to demonstrate if local remedial strategies are succeeding, and assist with planning, developing, and monitoring low and zero carbon infrastructure systems. Satellite-derived data can facilitate informed discussion and decision-making between community stakeholders to deliver low carbon outcomes at the precinct scale. Satellite-based systems can be integrated within the urban fabric to assist climate change mitigation. This paper is based on current work implemented jointly with municipalities to ascertain where within city precincts carbon emissions originate and how they can ultimately be reduced. It presents space technology as an instrumental tool for understanding the carbon impact of cities—in terms of the carbon intensive patterns and processes that shape human society, as well as having great potential for providing end-user products to communities to enhance the process of decarbonising city precincts.展开更多
Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternati...Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternative vehicle power train systems and fuels, are discussed on their development status and trends, including life cycle primary fossil energy use and greenhouse gas emissions of each pathway. To further support the low-carbon vehicle technologies development, integrated policies should seek to: (1) employ those integrated energy-saving technologies, (2) apply hybrid electric technology, (3) commercialize electric vehicles through battery technology innovation, (4) support fuel cell vehicles and hydrogen technology R&D for future potential applications, (5) boost the R&D of second generation biofuel technology, and (6) conduct further research on applying low-carbon technologies including CO2 capture and storage technology to coal-based transportation solutions.展开更多
文摘The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.
基金Reform and Practice of Talent Training Mode for Construction Engineering Technology Majors Serving the National Dual Carbon Strategy(Project No.Z233314)。
文摘Against the backdrop of global climate change and China’s“dual carbon”goals,the green transformation of the construction industry is imperative,and completing the transformation requires many dual carbon talents to support it.This article focuses on the construction engineering technology major in higher vocational education.It explores in depth the specific requirements for construction engineering technology talents in terms of professional knowledge,vocational skills,and literacy under the dual carbon mode.Based on this,corresponding dual carbon talent training courses are proposed,aiming to provide theoretical support and practical guidance for cultivating high-quality dual carbon talents that meet the needs of the new era.
文摘Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.
基金supported by Research Project Supported by Horizon Europe Framework Programme(101183092)Shanxi Scholarship Council of China(2023-128)+2 种基金National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618)Small and mediumsized oriented scientific and technological enterprises innovation ability improvement project of Shandong Province(2023TSGC0004)。
文摘In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.
基金Supported by " Research on The Control Technology of Subtropical Agriculture Pollution System" Special Project of National Environment Protection Public Welfare Industry Science Research "Research on The Construction Strategy of Ecological Civilization" Development Plan Research Project of State Development and Reform Commission+1 种基金Xiangxiang " High-output and Efficient Cultivation of High Quality Rice and Processing Technology Industrialization Demonstration " in The Plan Test Site of National Science and Technology Enriching People and Developing County Special Project Action" Xiangxiang Middle and Long-term Development Plan of Modern Agriculture" of Subtropical Agriculture Ecology Institute in Chinese Academy of Science
文摘The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic perspective,the seriousness of rural water quality,soil and atmospheric pollution in Xiangxiang,Xiangtan and the surrounding areas in Shaoshan irrigated area was revealed.The control measure which was 'four-dimensional pollution in the city and countryside'—— low-carbon-high-value agriculture and the technology innovation was proposed.The low-carbon-high-value technology innovation industrialization demonstration in three parts which included the pre-production,mid-production and post-production deep-processing of cultivation and breeding industry in the ecological cyclic agricultural garden in Shaoshan irrigated area was the driving force.We tried to propel the low-carbon ecological cultivation and breeding industry which included the paddy rice,grass,tree,medicinal herbs and pig,cow,chick,duck,fish.We wanted to relieve the structural unbalance of previous cultivation and breeding industry,'cheap grain hurting the farmers' and the short-leg problem of social-economic-ecological benefit.The results showed that the low-carbon-high-value agricultural system was a poly-generation technology system which promoted the multi-level and grading utilization,saved the energy,reduced the consumption and cleaned the production based on the ecology.
基金Supported by the Project of Jiangsu Provincial Department of Education (2011SJD630046)the Project of Huai'an Federation of Social Sciences (C-11-15)
文摘The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between development level of agricultural science and technology and development level of low-carbon agriculture in China. The results show that the correlation between the two is prominent; the number of agricultural science and technology talents, the number of agricultural science and technology patents, and the number of agricultural science and technology input are three major factors influencing the development of low-carbon agriculture. On this basis, I propose to take further effective measures, and put forth corresponding recommendations, in order to improve the level of agricultural science and technology.
基金supported by the Major Tender Projects of National Social Science Foundation of China "Study on Optimization and Operation Mechanism of Industrial Eco Economic System in China"[grant number 12&ZD207]National Natural Science Foundation of China "Research on Value Chain Structure and Firm Embeddedness of Emerging Industries Driven by Technology Convergence"[grant number 71704069]+2 种基金MOE(Ministry of Education in China)Liberal Arts and Social Sciences Foundation "Research on the Formation Mechanism of Dynamic Capability of China's Manufacturing Clusters for Sustainable Eco-innovation"[grant number 16YJC630125]Social Science Foundation of Jiangsu Province "Research on Eco-innovation and New Competitive Advantages of Jiangsu Manufacturing Industrial Clusters"[grant number17GLB020]Natural Science Foundation of the Jiangsu Higher Education Institutions "Spatial Pattern Evolution and Influencing Factors of Carbon Emissions Efficiency of Construction Industry in China"[grant number17KJB170004]
文摘China's technological efforts to tackle climate change have lasted for many years. It is necessary to test the effect of these efforts with quantitative method. To be exact, whether and how China's low-carbon technology innovation responds to climate change should be tested. Based on the2004-2015 panel data of 30 provinces in China, we use the method of ESDA analyzing the spatial correlation of China's low-carbon innovation technology. Furthermore, we use the spatial Durbin model empirically analyzing the spatial spillover effects. The results obtained are as follows: first,supply and demand of Chinese low-carbon innovation has some deviation in the spatial distribution. The low-carbon technology innovation as the supply factor shows the characteristics of expanding from the east to the west. Innovation in eastern China has always been the most active, but innovative activities in the middle and western China are gradually decreased.However, carbon emissions have the characteristics of moving westward, implying the change of technology demand different from technology supply. Second, China's low-carbon innovation actively responds to the trend of climate change, indicating China's technological efforts have paid off. However, the spatial spillover effects are not significant, showing that the efforts in each region of China still work for himself. Third, environmental regulation and market pull are important factors for low-carbon technology innovation. Among them, both supporting policy and inhibitory policy have significant impact on the local low-carbon technology innovation, but no significant spatial spillover effects. It shows that environmental policies in different regions are competitive and lack of demonstration effects. Economic growth and export as market pull have higher level of effect on low-carbon technology innovation for both local and adjacent areas.Some policy implications are proposed based on these results finally.
文摘After the reform and opening up,China's economy has developed rapidly.But in the process of economic development,the ecological environment has also paid a huge price.The destruction of the ecological environment directly affects survival and development of people.Therefore,it is necessary to strengthen environmental governance.Everyone has also begun to focus on low-carbon development.The construction industry is a serious waste of building materials with large energy dissipation.Therefore it is also a key industry for low-carbon transformation.This article mainly analyzes low-carbon building design technology and studies specific development strategies.
文摘With the issue of climate change increasingly restricting the sustainable development of society, people must realize that we must control atmospheric concentrations of greenhouse gases at a certain level. However, the traditional model of economic development will lead to human demand for energy continuing to grow, followed by a growth in emissions of carbon dioxide. Obviously we must ensure that there is rapid economic development, but also to protect the human living environment, which is a very sharp contradiction. A good solution to this conflict is to take a new model of development --- a low-carbon economy. The so-called low-carbon economy refers to the reduction of greenhouse gas emissions, the application of new technologies, new materials and new practices, etc., through improvements, optimization or innovative production and business activities, to achieve the maximum degree of reduction of greenhouse gas emissions, and the formation of a new economic development model, the goal is to mitigate climate change and promote sustainable human development. On how to develop a low-carbon economy, domestic and foreign scholars have been studied from many angles, one of which is a consensus to reduce greenhouse gas emissions through the development and use of low-carbon technologies.
文摘The paper introduced low-carbon economy and low-carbon technology, and proposed the de-tailed technical measures of low-carbon build-ing technology. Moreover, it has quantitatively calculated the “implicit” CO2 emission of C40 and C50 concrete columns, aluminium curtain wall, wall paintings and common floor decora-tion materials. The calculation results show that it is preferable to use high strength concrete, reduce the usage of aluminium materials and use wooden floor according to location. The paper can be a reference for quantitative meas-urement to the low-carbon technology and en-ergy efficiency.
文摘It is an important and unique approach of achieving sustainable urban development to save and use energy intensively, reduce carbon emission, and take the low-carbon development road. Taking Gaochun Zijin Science and Technology Special Community for example, this paper introduced planning measures for building a low-carbon city, including building a green network, compound utilization of urban spaces, establishing green transportation, using renewable resources, development of green architecture, so as to provide references for the future researches on the low-carbon urban development.
基金supported by the Henan Institute for Chinese Development Strategy of Engineering&Technology(Grant No.2022HENZDA02)by the Science&Technology Department of Sichuan Province Project(Grant No.2021YFH0010).
文摘Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
文摘Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In this paper, the author constructs an identical equation for carbon emission, based on the economic aggregate, the economic structure, the efficiency of energy utilization, the structure of energy consumption, and the coefficient of carbon emission; by applying to LMDI decomposition technology, the author analyzes the carbon emission of China from 1995 to 2007 at industrial level and regional level. The results show that the expansion of economic aggregate is the main reason for China' s rapidly increasing carbon emission and the increase of energy utilization efficiency is the key factor that can hold back the increase of carbon emission. In addition, the change of industrial structure or regional structure and the change of traditional energy structure have limited influence on the carbon emission, and their potentials have not yet been exploited. At the end of this paper, the author proposes the efforts that China should make to reduce carbon emission.
基金Supported by the Fundamental Research Funds for the Central Universities(CZY23014)Major Project of the National Social Science Foundation(19ZDA085)。
文摘On the basis of existing research,carbon emission reduction technologies in production,processing,packaging,transportation and storage of the food system were summarized,and their application effects were analyzed.In view of the inherent inadequacy of carbon emission reduction technologies in Chinese food system,starting from carbon labeling technologies and ESG system of the food industry,the unsoundness of the carbon emission reduction evaluation system and the high cost of related technology promotion,countermeasures such as strengthening top-level design,encouraging and supporting the development of new carbon emission reduction technologies,and improving carbon emission reduction technology subsidies were proposed by drawing on domestic and international experiences.
文摘Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,this paper constructs a basic regression model to study the"carbon reduction"effect,mechanism of action,and heterogeneity of green finance.The study finds that:the development of green finance significantly inhibits carbon emissions and has an obvious"carbon reduction"effect;green technology innovation has a mediating effect on the carbon emission reduction effect of green finance;in regions with a high level of economic development or a high degree of marketization,the"carbon reduction"effect of green finance is significant.
文摘It is essential that China follows a low carbon pathway, in which technology plays a key role in the future economy and social development. Based on the Integrated Policy Assessment Model for China, this paper analyzes a technology development roadmap for China to achieve a low carbon scenario. The results show that there are plenty of potential and opportunities for China to move towards a low carbon society when given enhanced and accelerated applications and expansions of key low carbon technologies. Strong policy and measure supports from all sectors in China are needed to achieve this goal.
文摘Space technology is a powerful tool for climate research. Satellite data improve knowledge of the human impact on the Planet’s physical geography. Similarly, remote sensing technology enhances understanding of the human impact on rising global carbon emissions. However, so far satellites have been principally limited to measuring the carbon emissions of cities from space. Standing alone, satellite technology is incapable of advancing the goal of decarbonisation. This will be achieved only if cities create local methodologies that significantly enhance the carbon reduction process. There exists enormous potential to bridge remote sensing for earth observation and global environmental change with local action towards decarbonised urban renewal and redevelopment. Satellite remote sensing has the ability to demonstrate if local remedial strategies are succeeding, and assist with planning, developing, and monitoring low and zero carbon infrastructure systems. Satellite-derived data can facilitate informed discussion and decision-making between community stakeholders to deliver low carbon outcomes at the precinct scale. Satellite-based systems can be integrated within the urban fabric to assist climate change mitigation. This paper is based on current work implemented jointly with municipalities to ascertain where within city precincts carbon emissions originate and how they can ultimately be reduced. It presents space technology as an instrumental tool for understanding the carbon impact of cities—in terms of the carbon intensive patterns and processes that shape human society, as well as having great potential for providing end-user products to communities to enhance the process of decarbonising city precincts.
基金co-supported by the China National Social Science Foundation(09&ZD029)MOE Project of Key Research Institute of Humanities and Social Sciences at Universities in China (2009JJD790029)+1 种基金Doctoral Thesis Fund of Beijing Municipal Science and Technology Commission (zz200923)the CAERC program(Tsinghua/ GM/SAIC-China)
文摘Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternative vehicle power train systems and fuels, are discussed on their development status and trends, including life cycle primary fossil energy use and greenhouse gas emissions of each pathway. To further support the low-carbon vehicle technologies development, integrated policies should seek to: (1) employ those integrated energy-saving technologies, (2) apply hybrid electric technology, (3) commercialize electric vehicles through battery technology innovation, (4) support fuel cell vehicles and hydrogen technology R&D for future potential applications, (5) boost the R&D of second generation biofuel technology, and (6) conduct further research on applying low-carbon technologies including CO2 capture and storage technology to coal-based transportation solutions.