In the era of urban stock development,advocatinglow-carbontravelandreducing transportation carbon emissions will help promote the realization of the “dual carbon” goal. Based on the urban planning and design concept...In the era of urban stock development,advocatinglow-carbontravelandreducing transportation carbon emissions will help promote the realization of the “dual carbon” goal. Based on the urban planning and design concept of “small block, dense road network”, the paper analyzes the cases of low-carbon transportation-oriented road network planning and construction in the Netherlands,and summarizes the design concept and implementation method of road network planning of public transportation and slow traffic friendly blocks. The successful experiences of low-carbon transportationoriented city construction in the Netherlands are summarized, in order to provide the reference for lowcarbon urban development in China.展开更多
The transportation industry is the basic industry of national economic development. At the same time, it is the only industry in China that has continuously increased CO2 emissions, and the high energy consumption pro...The transportation industry is the basic industry of national economic development. At the same time, it is the only industry in China that has continuously increased CO2 emissions, and the high energy consumption problems have not been solved. Henan province, as a major energy consumption province, it is urgent to improve the supply quality of transportation industry. The paper uses the IPCC calculation method for carbon emission to calculate the CO2 emissions of transportation industry in Henan province from 2004 to 2014. Then, this paper uses the LMDI method to decompose the CO2 emission in the transportation industry and give the proposal to reduce the CO2 emission according to the CO2 emission drivers.展开更多
The transportation industry is an essential sector for carbon emissions mitigation.This paper firstly used the LMDI(Logarithmic Mean Divisia Index)decomposition method to establish factors decomposition model on China...The transportation industry is an essential sector for carbon emissions mitigation.This paper firstly used the LMDI(Logarithmic Mean Divisia Index)decomposition method to establish factors decomposition model on China's transportation carbon emission.Then,a quantitative analysis was performed to study the factors influencing China's transportation carbon emissions from 1991 to 2008,which are identified as transportation energy efficiency,transportation structure and transportation development.The results showed that:(1)The impact of transportation development on transportation carbon emissions showed pulling function.Its contribution value to carbon emissions remained at high growth since 1991 and showed an exponential growth trend.(2)The impact of transportation structure on transportation carbon emissions showed promoting function in general,but its role in promoting carbon emissions decreased year by year.And with the continuous optimization of transportation structure,the promoting effect decreased gradually and showed the inversed"U"trend.(3)The impact of transportation energy efficiency on transportation carbon emissions showed a function of inhibition before pulling.In order to predict the potential of carbon emission reduction,three scenarios were set.Analysis of the scenarios showed that if greater intensity emission reduction measures are taken,the carbon emissions will reduce by 31.01 million tons by 2015 and by 48.81 million tons by 2020.展开更多
Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the wo...Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con- structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis- Life Cycle Analysis (PA-LCA). The following results were obtained: (1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor; (2) the C02 emissions from truck transportation were three to ten times higher than those of the belt conveyor; (3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased; (4) based on 2013 prices in China, the energy cost of transportation using a belt conveyor in open-cut coal mines could save 0.6-2.4 Yuan/(t kin) compared to truck transportation.展开更多
Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation indu...Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation industry and the relevant region.Based on the ideal point cross-efficiency(IPCE)model,the social network analysis method was employed herein to explore the spatial correlation network structure of China’s provincial TCEE and its influencing factors.The results obtained showed the following outcomes.(1)During the study period,China’s provincial TCEE formed a complex and multithreaded network association relationship,but its network association structure was still relatively loose and presented the hierarchical gradient characteristics of dense in the east and sparse in the west.(2)The correlation of China’s TCEE formed a block segmentation based on the regional boundaries,and its factional structure was relatively obvious.The eastern region was closely connected with the central region,and generally connected with the western and northeastern regions.The central region was mainly connected with the eastern and western regions,and relatively less connected with the northeastern region.Besides,the northeastern region was weakly connected with the western region.(3)Shanghai,Beijing,Zhejiang,Guangdong,Jiangsu,Tianjin,and other developed provinces were in the core leading position in the TCEE network,which significantly impacted the spatial correlation of TCEE.However,Heilongjiang,Jilin,Xinjiang,Qinghai,and other remote provinces in the northeast and northwest were at the absolute edge of the network,which weakly impacted the spatial correlation of TCEE.(4)Provincial distance,economic development-level difference,transportation intensity difference,and transportation structure difference had significant negative impacts on the spatial correlation network of China’s provincial TCEE.In contrast,the energy-saving technology level difference had a significant positive impact on it.The regression coefficients of transportation energy structure and environmental regulation differences were positive but insignificant;their response mechanism and effects need to be improved and enhanced.展开更多
This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life...This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems.展开更多
The low carbon of sustainable development of ecological economy is sweeping across the world. The logistic industry plays a key role in the economic development, which influences emission and impact of the theory of l...The low carbon of sustainable development of ecological economy is sweeping across the world. The logistic industry plays a key role in the economic development, which influences emission and impact of the theory of low carbon. This paper analyzes the energy consumption and carbon emission in different modes in transportation, and provides reasonable suggestions on low carbon and reduction emission for transportation industry in China.展开更多
Measured concentrations of dissolved oxygen,phosphate,silicate,total alkalinity and calculated totalCO<sub>2</sub> in a section between 121°E and 125°E across the Kuroshio near 22°N off Taiw...Measured concentrations of dissolved oxygen,phosphate,silicate,total alkalinity and calculated totalCO<sub>2</sub> in a section between 121°E and 125°E across the Kuroshio near 22°N off Taiwan and thegeostrophic velocity were used to estimate the gross transport of oxygen,nutrients and carbonates. The flux of dissolved oxygen is 6.7×10<sup>6</sup> mol/s northward and 0.9×10<sup>6</sup> mol/s southward.The netflux equals 5.8×10<sup>6</sup> mol/s down-stream.The northward flux of phosphate is 22.6×10<sup>3</sup> mol/s;the south-ward flux is 1.4×10<sup>3</sup> mol/s.The net phosphate flux is 21.2×10<sup>3</sup> mol/s northward.The flux of silicateis 967×10<sup>3</sup> northward and 59×10<sup>3</sup> mol/s southward;the net transport is 908×10<sup>3</sup> mol/s down-stream.The flux of alkalinity is 75.5×10<sup>6</sup> mol/s northward,and 10.8×10<sup>6</sup> mol/s southward,the net flux is64.7×10<sup>6</sup> mol/s northward.For total CO<sub>2</sub> the transport is 73.4×10<sup>6</sup> mol/s northward and 10.8×10<sup>6</sup> mol/ssouthward,or a net transport of 62.6×10<sup>6</sup> mol/s northward.展开更多
Surface sediments from the Changjiang River (Yangtze River) Estuary, Hangzhou Bay, and their adjacent waters were analyzed for their grain size distribution, organic carbon (OC) concentration, and stable carbon is...Surface sediments from the Changjiang River (Yangtze River) Estuary, Hangzhou Bay, and their adjacent waters were analyzed for their grain size distribution, organic carbon (OC) concentration, and stable carbon isotope composition (δ13C). Based on this analysis, about 36 surface sediment samples were selected from various environments and separated into sand (〉0.250 ram, 0.125-0.250 ram, 0.063-0.125 mm) and silt (0.025-0.063 mm) fractions by wet-sieving fractionation methods, and further into silt- (0.004-0.025 mm) and clay-sized (〈0.004 mm) fractions by centrifugal fractionation. Sediments of six grain size categories were analyzed for their OC and 613C contents to explore the grain size composition and transport paths of sedimentary OC in the study area. From fine to coarse fractions, the OC content was 1.18%, 0.51%, 0.46%, 0.42%, 0.99%, and 0.48%, respectively, while the δ13C was -21.64‰, -22.03‰, -22.52‰, -22.46‰, -22.36‰, and -22.28%0, respectively. In each size category, the OC contribution was 42.96%, 26.06%, 9.82%, 5.75%, 7.09%, and 8.33%, respectively. The OC content in clay and fine silt fractions (〈0.025 ram) was about 69.02%. High OC concentrations were mainly found in offshore modern sediments in the northeast of the Changjiang River Estuary, in modern sediments in the lower estuary of the Changjiang River and Hangzhou Bay, and in Cyclonic Eddy modern sediments to the southwest of the Cheju Island. Integrating the distribution of terrestrial OC content of each grain size category with the δ13C of the bulk sediment indicated that the terrestrial organic material in the Changjiang River Estuary was transported seaward and dispersed to the Cyclonic Eddy modern sediments to the southwest of the Cheju Island via two pathways: one was a result of the Changjiang River Diluted Water (CDW) northeastward extending branch driven by the North Jiangsu Coastal Current and the Yellow Sea Coastal Current, while the other one was the result of the CDW southward extending branch driven by the Taiwan Warm Current.展开更多
The present work is concerned with extracting information about intermolecular potential energies of binary mixtures of CO2 with C2H6, C3H8, n-C4Hlo and iso-C4Hlo, by the usage of the inversion method, and then predic...The present work is concerned with extracting information about intermolecular potential energies of binary mixtures of CO2 with C2H6, C3H8, n-C4Hlo and iso-C4Hlo, by the usage of the inversion method, and then predicting the dilute gas transport properties of the mixtures. Using the inverted pair potential energies, the Chap- man-Enskog version of the kinetic theory was applied to calculate transport properties, except thermal conductivity of mixtures. The calculation of thermal conductivity through the methods of Schreiber et al. and Uribe et al. was discussed. Calculations were performed over a wide temperature range and equimolar composition. Rather accurate correlations for the viscosity coefficients of the mixtures in the temperature range were reproduced from the pre- sent unlike intermolecular potential energies. Our estimated accuracies for the viscosity are within ±2%. Acceptable agreement between the predicted values of the viscosity and thermal conductivity with the literature values demon- strates the predictive power of the inversion scheme. In the case of thermal conductivity our results are in favor of the preference of Uribe et al.'s method over Schreiber et al.'s scheme.展开更多
Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were...Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were collected using a human-occupied vehicle across the axis of the southern Yap Trench(SYT).The total organic carbon(TOC)and total nitrogen(TN)contents,δ13C,radiocarbon ages,specific surface areas,and grain size compositions of sediments from three cores were measured.We explored the influence of the lateral downslope transport on the dispersal of the sediments and established a tentative box model for the SOC balance.In the SYT,the surface TOC content decreased with water depth and was decoupled by the funneling effect of the V-shaped hadal trench.However,the sedimentation(0.0025 cm/a)and SOC accumulation rates(∼0.038 g/(m^(2)·a)(in terms of OC))were approximately 50%higher in the deeper hadal region than in the abyssal region(0.0016 cm/a and∼0.026 g/(m^(2)·a)(in terms of OC),respectively),indicating the occurrence of lateral downslope transport.The fluctuating variations in the prokaryotic abundances and the SOC accumulation rate suggest the periodic input of surficial sediments from the shallow region.The similar average TOC(0.31%–0.38%),TN(0.06%–0.07%)contents,and SOC compositions(terrestrial OC(11%–18%),marine phytoplanktonic OC(45%–53%),and microbial OC(32%–44%))of the three sites indicate that the lateral downslope transport has a significant mixing effect on the SOC composition.The output fluxes of the laterally transported SOC(0.44–0.56 g/(m^(2)·a)(in terms of OC))contributed approximately(47%–73%)of the total SOC input,and this proportion increased with water depth.The results of this study demonstrate the importance of lateral downslope transport in the spatial distribution and development of biomes.展开更多
Stable carbon isotope ratios have been used to study the sources of particulate organic carbon(POC) in the Amazon River and its tributaries, and to examine the transport of the riverine POC intothe oceanic environment...Stable carbon isotope ratios have been used to study the sources of particulate organic carbon(POC) in the Amazon River and its tributaries, and to examine the transport of the riverine POC intothe oceanic environment. POC in the upper reaches of the Amazon River has more positive δC values(--24.5‰ to -- 28.0‰) than that in the middle and lower reaches (--27.9‰ to -- 30.1‰). TheδC of POC from the tributaries is generally more negative than that observed in the Amazon mainchannel. This δC datum shows that the POC in the Amazon main channel is predominantly of terres-trial origin rather than a result of in situ production. A large range of δC values (--17.5‰ to -28.4‰) is observed in the Amazon Estuary and plume. and is considered as the result of the mixing展开更多
Clay minerals can hinder the transport of various contaminants in soil and aquifer, but how clay minerals affect the transport of nanoparticles in aquifers has not been investigated in depth. In this paper, the transp...Clay minerals can hinder the transport of various contaminants in soil and aquifer, but how clay minerals affect the transport of nanoparticles in aquifers has not been investigated in depth. In this paper, the transport of surfactants dispersed multi-walled carbon nanotubes(MWCNTs) in welldefined quartz sand and mixtures of quartz sand and clay minerals(kaolinite and montmorillonite) with varying ionic strengths was studied. Sodium dodecyl benzenesulfonate(SDBS) and octyl-phenolethoxylate(TX100) MWCNT suspensions can migrate through quartz sand easily, but the presence of less than 2% w/w clay minerals in quartz sand can significantly hinder the transport of MWCNT suspensions, especially at high ion strength(0.6 m M CaCl2). The inhibition mechanism of clay minerals for surfactant-dispersed MWCNTs in porous media is the interception of MWCNTs. Kaolinite has stronger inhibition effect for MWCNTs transport than montmorillonite because more kaolinite can be retained in the quartz sand. Adsorption of surfactants by clay minerals does not affect the transport of MWCNTs significantly. This finding is important for the environmental assessment of MWCNT transport risks in soils and aquifers.展开更多
A 2-dimensional atmospheric transport model is deployed in a simplified CO 2 inverse study. Calculated carbon flux distribution for the interval from 1981 to 1997 confirms the existence of a terrestrial carbon sink i...A 2-dimensional atmospheric transport model is deployed in a simplified CO 2 inverse study. Calculated carbon flux distribution for the interval from 1981 to 1997 confirms the existence of a terrestrial carbon sink in mid-high latitude area of North Hemisphere. Strong interannual variability exists in carbon flux patterns, implying a possible link with ENSO and other natural episodes such as Pinatubo volcano eruption in 1991. Mechanism of this possible link was investigated with statistic method. Correlation analysis indicated that in North Hemisphere, climatic factors such as temperature and precipitation, to some extend, could influence the carbon cycle process of land and ocean, thus cause considerable change in carbon flux distribution. In addition, correlation study also demonstrated the possible important role of Asian terrestrial ecosystems in carbon cycle.展开更多
In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect...In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect can be investigated by employing a model that depicts the local environment for the reduction reactions. Simultaneously, electrochemical impedance spectroscopy, despite being a versatile technique, has rarely been adopted for studying the mass transport features during the carbon dioxide(CO_(2))electroreduction. In this work, this aspect is deeply analyzed by correlating the results of impedance spectroscopy characterization with those obtained by a bubble-induced mass transport modeling under controlled diffusion conditions on a gold rotating disk electrode. The effects of potential and rotation rate on the local environment are also clarified. In particular, it has been found that CO_(2) depletion occurs at high kinetics when the rotation is absent, giving rise to an increment of the competing hydrogen evolution reaction. This feature reflects in an enlargement of the diffusion resistance, which overcomes the charge transport one.展开更多
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
Based on the non-equilibrium Green's method and density functional theory, the magnetic transport of Fe- phthMocyanine dimers with two armchair single-wailed carbon nanotube electrodes is investigated. The results sh...Based on the non-equilibrium Green's method and density functional theory, the magnetic transport of Fe- phthMocyanine dimers with two armchair single-wailed carbon nanotube electrodes is investigated. The results show that the system can present high-performance spin filtering, magnetoresistance, and low-bias spin negative differential resistance effects by tuning the external magnetic field. These results show that the Fe-phthalocyanine dimer has the potential to design future molecular spintronic devices.展开更多
Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78,3.21,3.92 and 4.64%.The conductivity data in the temperature range o...Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78,3.21,3.92 and 4.64%.The conductivity data in the temperature range of400-500 K shows the extended state conduction.The conductivity data in the temperature range of 150-300 K shows the multi-phonon hopping conduction.The Berthelot-type conduction dominates in the temperature range of 50-150 K.The conductivity of the films in the temperature range about 〈 50 K is described in terms of variable-range hopping conduction.In low temperatures,the localized density of state around Fermi level(F)for the film deposition with 3.92% nickel has a maximum value of about 56.2×10^(17)cm^(-3)eV^(-1) with the minimum average hopping distance of about 3.43 × 10^(-6) cm.展开更多
基金Sponsored by General Project of Natural Science Foundation of Beijing City (8202017)Youth Talent Support Program of 2018 Beijing Municipal University Academic Human Resources Development (PXM2018_014212_000043)。
文摘In the era of urban stock development,advocatinglow-carbontravelandreducing transportation carbon emissions will help promote the realization of the “dual carbon” goal. Based on the urban planning and design concept of “small block, dense road network”, the paper analyzes the cases of low-carbon transportation-oriented road network planning and construction in the Netherlands,and summarizes the design concept and implementation method of road network planning of public transportation and slow traffic friendly blocks. The successful experiences of low-carbon transportationoriented city construction in the Netherlands are summarized, in order to provide the reference for lowcarbon urban development in China.
基金supported by Research on the National Social Science Fund of Henan Polytechnic University(GSKY2017-28)
文摘The transportation industry is the basic industry of national economic development. At the same time, it is the only industry in China that has continuously increased CO2 emissions, and the high energy consumption problems have not been solved. Henan province, as a major energy consumption province, it is urgent to improve the supply quality of transportation industry. The paper uses the IPCC calculation method for carbon emission to calculate the CO2 emissions of transportation industry in Henan province from 2004 to 2014. Then, this paper uses the LMDI method to decompose the CO2 emission in the transportation industry and give the proposal to reduce the CO2 emission according to the CO2 emission drivers.
基金supported by the National Science and Technology Ministry(Grant No.2011BAJ07B01)
文摘The transportation industry is an essential sector for carbon emissions mitigation.This paper firstly used the LMDI(Logarithmic Mean Divisia Index)decomposition method to establish factors decomposition model on China's transportation carbon emission.Then,a quantitative analysis was performed to study the factors influencing China's transportation carbon emissions from 1991 to 2008,which are identified as transportation energy efficiency,transportation structure and transportation development.The results showed that:(1)The impact of transportation development on transportation carbon emissions showed pulling function.Its contribution value to carbon emissions remained at high growth since 1991 and showed an exponential growth trend.(2)The impact of transportation structure on transportation carbon emissions showed promoting function in general,but its role in promoting carbon emissions decreased year by year.And with the continuous optimization of transportation structure,the promoting effect decreased gradually and showed the inversed"U"trend.(3)The impact of transportation energy efficiency on transportation carbon emissions showed a function of inhibition before pulling.In order to predict the potential of carbon emission reduction,three scenarios were set.Analysis of the scenarios showed that if greater intensity emission reduction measures are taken,the carbon emissions will reduce by 31.01 million tons by 2015 and by 48.81 million tons by 2020.
基金supported by the key project of the National Natural Science Foundation of China(No.51034005)the Research Fund for the Doctoral Program of Higher Education(the Specialized Research Fund for the Doctoral Program of Higher Education of China)(No.20100095110019)+1 种基金the National‘‘Twelfth Five-Year’’Plan for Science&Technology Support(No.2014BAC14B00)the National High Technology Research and Development Program of China(No.2012AA062004)
文摘Transportation accounts for 80% of open-cut coal mine carbon emissions. With regard to the energy con- sumption and carbon emissions of transportation within an open-cut mine, this paper systematically compared the work and energy consumption of a truck and belt conveyor on a theoretical basis, and con- structed a model to calculate the energy consumption of open-cut mine transportation. Life cycle carbon emission factors and power consumption calculation model were established through a Process Analysis- Life Cycle Analysis (PA-LCA). The following results were obtained: (1) the energy consumption of truck transportation was four to twelve times higher than that of the belt conveyor; (2) the C02 emissions from truck transportation were three to ten times higher than those of the belt conveyor; (3) with the increase in the slope angle for transportation, the ratio of truck to belt conveyor for both energy consumption and carbon emissions gradually decreased; (4) based on 2013 prices in China, the energy cost of transportation using a belt conveyor in open-cut coal mines could save 0.6-2.4 Yuan/(t kin) compared to truck transportation.
基金This research was funded by the National Science Foundation under the Project“Synergic evolution mechanism of intercity transportation and metropolitan tourism spatial pattern”[Grant number.41771162]It was also funded by the National First-Class Discipline Development Project in Hunan Province under the category of“Geography”[Grang number.510002].
文摘Grasping the spatial correlation structure of transportation carbon emission efficiency(TCEE)and its influencing factors is significant for promoting high-quality and coordinated development of the transportation industry and the relevant region.Based on the ideal point cross-efficiency(IPCE)model,the social network analysis method was employed herein to explore the spatial correlation network structure of China’s provincial TCEE and its influencing factors.The results obtained showed the following outcomes.(1)During the study period,China’s provincial TCEE formed a complex and multithreaded network association relationship,but its network association structure was still relatively loose and presented the hierarchical gradient characteristics of dense in the east and sparse in the west.(2)The correlation of China’s TCEE formed a block segmentation based on the regional boundaries,and its factional structure was relatively obvious.The eastern region was closely connected with the central region,and generally connected with the western and northeastern regions.The central region was mainly connected with the eastern and western regions,and relatively less connected with the northeastern region.Besides,the northeastern region was weakly connected with the western region.(3)Shanghai,Beijing,Zhejiang,Guangdong,Jiangsu,Tianjin,and other developed provinces were in the core leading position in the TCEE network,which significantly impacted the spatial correlation of TCEE.However,Heilongjiang,Jilin,Xinjiang,Qinghai,and other remote provinces in the northeast and northwest were at the absolute edge of the network,which weakly impacted the spatial correlation of TCEE.(4)Provincial distance,economic development-level difference,transportation intensity difference,and transportation structure difference had significant negative impacts on the spatial correlation network of China’s provincial TCEE.In contrast,the energy-saving technology level difference had a significant positive impact on it.The regression coefficients of transportation energy structure and environmental regulation differences were positive but insignificant;their response mechanism and effects need to be improved and enhanced.
基金the financial support of the National Natural Science Foundation of China(U2268208)Science and Technology Program of China National Railway Group Co.,Ltd.(N2022×037).
文摘This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems.
文摘The low carbon of sustainable development of ecological economy is sweeping across the world. The logistic industry plays a key role in the economic development, which influences emission and impact of the theory of low carbon. This paper analyzes the energy consumption and carbon emission in different modes in transportation, and provides reasonable suggestions on low carbon and reduction emission for transportation industry in China.
文摘Measured concentrations of dissolved oxygen,phosphate,silicate,total alkalinity and calculated totalCO<sub>2</sub> in a section between 121°E and 125°E across the Kuroshio near 22°N off Taiwan and thegeostrophic velocity were used to estimate the gross transport of oxygen,nutrients and carbonates. The flux of dissolved oxygen is 6.7×10<sup>6</sup> mol/s northward and 0.9×10<sup>6</sup> mol/s southward.The netflux equals 5.8×10<sup>6</sup> mol/s down-stream.The northward flux of phosphate is 22.6×10<sup>3</sup> mol/s;the south-ward flux is 1.4×10<sup>3</sup> mol/s.The net phosphate flux is 21.2×10<sup>3</sup> mol/s northward.The flux of silicateis 967×10<sup>3</sup> northward and 59×10<sup>3</sup> mol/s southward;the net transport is 908×10<sup>3</sup> mol/s down-stream.The flux of alkalinity is 75.5×10<sup>6</sup> mol/s northward,and 10.8×10<sup>6</sup> mol/s southward,the net flux is64.7×10<sup>6</sup> mol/s northward.For total CO<sub>2</sub> the transport is 73.4×10<sup>6</sup> mol/s northward and 10.8×10<sup>6</sup> mol/ssouthward,or a net transport of 62.6×10<sup>6</sup> mol/s northward.
基金The National Basic Research Program(973 Program)of China under contract No.2010CB428903the National Natural Science Foundation of China under contract Nos 41106050,41203085 and 41076036+1 种基金the Public Welfare Industry Research Specific Funding of China under contract Nos 201105014,201105012 and 201205008the Basic Scientific Research Fund of the Second Institute of Oceanography of State Oceanic Administration of China under contract Nos JG1108 and JG1219
文摘Surface sediments from the Changjiang River (Yangtze River) Estuary, Hangzhou Bay, and their adjacent waters were analyzed for their grain size distribution, organic carbon (OC) concentration, and stable carbon isotope composition (δ13C). Based on this analysis, about 36 surface sediment samples were selected from various environments and separated into sand (〉0.250 ram, 0.125-0.250 ram, 0.063-0.125 mm) and silt (0.025-0.063 mm) fractions by wet-sieving fractionation methods, and further into silt- (0.004-0.025 mm) and clay-sized (〈0.004 mm) fractions by centrifugal fractionation. Sediments of six grain size categories were analyzed for their OC and 613C contents to explore the grain size composition and transport paths of sedimentary OC in the study area. From fine to coarse fractions, the OC content was 1.18%, 0.51%, 0.46%, 0.42%, 0.99%, and 0.48%, respectively, while the δ13C was -21.64‰, -22.03‰, -22.52‰, -22.46‰, -22.36‰, and -22.28%0, respectively. In each size category, the OC contribution was 42.96%, 26.06%, 9.82%, 5.75%, 7.09%, and 8.33%, respectively. The OC content in clay and fine silt fractions (〈0.025 ram) was about 69.02%. High OC concentrations were mainly found in offshore modern sediments in the northeast of the Changjiang River Estuary, in modern sediments in the lower estuary of the Changjiang River and Hangzhou Bay, and in Cyclonic Eddy modern sediments to the southwest of the Cheju Island. Integrating the distribution of terrestrial OC content of each grain size category with the δ13C of the bulk sediment indicated that the terrestrial organic material in the Changjiang River Estuary was transported seaward and dispersed to the Cyclonic Eddy modern sediments to the southwest of the Cheju Island via two pathways: one was a result of the Changjiang River Diluted Water (CDW) northeastward extending branch driven by the North Jiangsu Coastal Current and the Yellow Sea Coastal Current, while the other one was the result of the CDW southward extending branch driven by the Taiwan Warm Current.
基金supports from the Shiraz University of Technology
文摘The present work is concerned with extracting information about intermolecular potential energies of binary mixtures of CO2 with C2H6, C3H8, n-C4Hlo and iso-C4Hlo, by the usage of the inversion method, and then predicting the dilute gas transport properties of the mixtures. Using the inverted pair potential energies, the Chap- man-Enskog version of the kinetic theory was applied to calculate transport properties, except thermal conductivity of mixtures. The calculation of thermal conductivity through the methods of Schreiber et al. and Uribe et al. was discussed. Calculations were performed over a wide temperature range and equimolar composition. Rather accurate correlations for the viscosity coefficients of the mixtures in the temperature range were reproduced from the pre- sent unlike intermolecular potential energies. Our estimated accuracies for the viscosity are within ±2%. Acceptable agreement between the predicted values of the viscosity and thermal conductivity with the literature values demon- strates the predictive power of the inversion scheme. In the case of thermal conductivity our results are in favor of the preference of Uribe et al.'s method over Schreiber et al.'s scheme.
基金The Scientific Research Fund of the Second Institute of Oceanography under contract Nos JG2011 and JG1516the National Natural Science Foundation of China under contract No.41606090the National Basic Research Program(973 Program)of China under contract No.2015CB755904.
文摘Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were collected using a human-occupied vehicle across the axis of the southern Yap Trench(SYT).The total organic carbon(TOC)and total nitrogen(TN)contents,δ13C,radiocarbon ages,specific surface areas,and grain size compositions of sediments from three cores were measured.We explored the influence of the lateral downslope transport on the dispersal of the sediments and established a tentative box model for the SOC balance.In the SYT,the surface TOC content decreased with water depth and was decoupled by the funneling effect of the V-shaped hadal trench.However,the sedimentation(0.0025 cm/a)and SOC accumulation rates(∼0.038 g/(m^(2)·a)(in terms of OC))were approximately 50%higher in the deeper hadal region than in the abyssal region(0.0016 cm/a and∼0.026 g/(m^(2)·a)(in terms of OC),respectively),indicating the occurrence of lateral downslope transport.The fluctuating variations in the prokaryotic abundances and the SOC accumulation rate suggest the periodic input of surficial sediments from the shallow region.The similar average TOC(0.31%–0.38%),TN(0.06%–0.07%)contents,and SOC compositions(terrestrial OC(11%–18%),marine phytoplanktonic OC(45%–53%),and microbial OC(32%–44%))of the three sites indicate that the lateral downslope transport has a significant mixing effect on the SOC composition.The output fluxes of the laterally transported SOC(0.44–0.56 g/(m^(2)·a)(in terms of OC))contributed approximately(47%–73%)of the total SOC input,and this proportion increased with water depth.The results of this study demonstrate the importance of lateral downslope transport in the spatial distribution and development of biomes.
文摘Stable carbon isotope ratios have been used to study the sources of particulate organic carbon(POC) in the Amazon River and its tributaries, and to examine the transport of the riverine POC intothe oceanic environment. POC in the upper reaches of the Amazon River has more positive δC values(--24.5‰ to -- 28.0‰) than that in the middle and lower reaches (--27.9‰ to -- 30.1‰). TheδC of POC from the tributaries is generally more negative than that observed in the Amazon mainchannel. This δC datum shows that the POC in the Amazon main channel is predominantly of terres-trial origin rather than a result of in situ production. A large range of δC values (--17.5‰ to -28.4‰) is observed in the Amazon Estuary and plume. and is considered as the result of the mixing
基金supported by National Natural Science Foundation of China (41002088)Fundamental Research Project (SK201002,SK201502) of the Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences
文摘Clay minerals can hinder the transport of various contaminants in soil and aquifer, but how clay minerals affect the transport of nanoparticles in aquifers has not been investigated in depth. In this paper, the transport of surfactants dispersed multi-walled carbon nanotubes(MWCNTs) in welldefined quartz sand and mixtures of quartz sand and clay minerals(kaolinite and montmorillonite) with varying ionic strengths was studied. Sodium dodecyl benzenesulfonate(SDBS) and octyl-phenolethoxylate(TX100) MWCNT suspensions can migrate through quartz sand easily, but the presence of less than 2% w/w clay minerals in quartz sand can significantly hinder the transport of MWCNT suspensions, especially at high ion strength(0.6 m M CaCl2). The inhibition mechanism of clay minerals for surfactant-dispersed MWCNTs in porous media is the interception of MWCNTs. Kaolinite has stronger inhibition effect for MWCNTs transport than montmorillonite because more kaolinite can be retained in the quartz sand. Adsorption of surfactants by clay minerals does not affect the transport of MWCNTs significantly. This finding is important for the environmental assessment of MWCNT transport risks in soils and aquifers.
文摘A 2-dimensional atmospheric transport model is deployed in a simplified CO 2 inverse study. Calculated carbon flux distribution for the interval from 1981 to 1997 confirms the existence of a terrestrial carbon sink in mid-high latitude area of North Hemisphere. Strong interannual variability exists in carbon flux patterns, implying a possible link with ENSO and other natural episodes such as Pinatubo volcano eruption in 1991. Mechanism of this possible link was investigated with statistic method. Correlation analysis indicated that in North Hemisphere, climatic factors such as temperature and precipitation, to some extend, could influence the carbon cycle process of land and ocean, thus cause considerable change in carbon flux distribution. In addition, correlation study also demonstrated the possible important role of Asian terrestrial ecosystems in carbon cycle.
文摘In the electrochemical conversion of carbon dioxide, high currents need to be employed to obtain large production rates, thus implying that mass transport of reactants and products is of crucial importance.This aspect can be investigated by employing a model that depicts the local environment for the reduction reactions. Simultaneously, electrochemical impedance spectroscopy, despite being a versatile technique, has rarely been adopted for studying the mass transport features during the carbon dioxide(CO_(2))electroreduction. In this work, this aspect is deeply analyzed by correlating the results of impedance spectroscopy characterization with those obtained by a bubble-induced mass transport modeling under controlled diffusion conditions on a gold rotating disk electrode. The effects of potential and rotation rate on the local environment are also clarified. In particular, it has been found that CO_(2) depletion occurs at high kinetics when the rotation is absent, giving rise to an increment of the competing hydrogen evolution reaction. This feature reflects in an enlargement of the diffusion resistance, which overcomes the charge transport one.
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
基金Supported by the National Natural Science Foundation of China under Grant No 11104115the Natural Science Foundation of Shandong Province under Grant No ZR2016AM11
文摘Based on the non-equilibrium Green's method and density functional theory, the magnetic transport of Fe- phthMocyanine dimers with two armchair single-wailed carbon nanotube electrodes is investigated. The results show that the system can present high-performance spin filtering, magnetoresistance, and low-bias spin negative differential resistance effects by tuning the external magnetic field. These results show that the Fe-phthalocyanine dimer has the potential to design future molecular spintronic devices.
文摘Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78,3.21,3.92 and 4.64%.The conductivity data in the temperature range of400-500 K shows the extended state conduction.The conductivity data in the temperature range of 150-300 K shows the multi-phonon hopping conduction.The Berthelot-type conduction dominates in the temperature range of 50-150 K.The conductivity of the films in the temperature range about 〈 50 K is described in terms of variable-range hopping conduction.In low temperatures,the localized density of state around Fermi level(F)for the film deposition with 3.92% nickel has a maximum value of about 56.2×10^(17)cm^(-3)eV^(-1) with the minimum average hopping distance of about 3.43 × 10^(-6) cm.