期刊文献+
共找到2,637篇文章
< 1 2 132 >
每页显示 20 50 100
Research into Applicability of Wöhler Curve Method for Low-Cycle Fatigue of Metallic Materials
1
作者 Xiangqiao Yan 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期22-37,共16页
Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important... Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important to show that,for low cycle fatigue of metals,such a way that a stress-based intensity parameter calculated by the linear-elastic analysis is taken to be a stress intensity parameter,S,to establish a relationship between the stress intensity parameter,S,and the fatigue life,N,is practicable.In this paper,many metallic materials from the literature are given to show that the Wöhler Curve Method is well suitable for low-cycle fatigue analysis of metals. 展开更多
关键词 low cycle fatigue Wöhler curve method coffin-manson curve method METALS
下载PDF
Effect of long-period stacking ordered structure on very high cycle fatigue properties of Mg-Gd-Y-Zn-Zr alloys
2
作者 Xiangyu WANG Chao HE +3 位作者 Xue Li Lang LI Yongjie LIU Qingyuan WANG 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2811-2822,共12页
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th... Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior. 展开更多
关键词 fatigue crack initiation Long-period stacking ordered structure Mg alloys Ultrafine grains Very high cycle fatigue
下载PDF
TEMPERATURE EFFECT ON LOW-CYCLE FATIGUE BEHAVIOR OF NICKEL-BASED SINGLE CRYSTALLINE SUPERALLOY 被引量:5
3
作者 Xianfeng Ma Huiji Shi +3 位作者 Jialin Gu Zhaoxi Wang Harald Harders Thomas Malow 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第4期289-297,共9页
The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low... The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low strain rate of 10^-3 s^-1 in ambient atmosphere. The superalloy exhibited cyclic tension-compression asymmetry which is dependent on the temperature and applied strain amplitude. Analysis on the fracture surfaces showed that the surface and subsurface casting micropores were the major crack initiation sites. Interior Ta-rich carbides were frequently observed in all specimens. Two distinct types of fracture were suggested by fractogaphy. One type was characterized by Mode-I cracking with a microscopically rough surface at To + 250℃. Whereas the other type at lower temperature T0℃ favored either one or several of the octahedral {111} planes, in contrast to the normal Mode-I growth mode typically observed at low loading frequencies (several Hz). The failure mechanisms for two cracking modes are shearing of γ' precipitates together with the matrix at T0℃ and cracking confined in the matrix and the γ/γ'interface at To - 250℃. 展开更多
关键词 low cycle fatigue single crystal nickel-based superalloy
下载PDF
HIGH-TEMPERATURE LOW-CYCLE FATIGUE BEHAVIOR OF NICKEL-BASED SUPERALLOY GH4049 被引量:3
4
作者 Chen, L.J. Yao, G. +1 位作者 Wang, Z.G. Tian, J.F. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第1期12-15,共4页
The cyclic stress response and lowcycle fatigue life for wrought nickelbased superalloy GH4049 were investigated in the temperature range from 500 to 800 The relationship between the strain amplitude and the number o... The cyclic stress response and lowcycle fatigue life for wrought nickelbased superalloy GH4049 were investigated in the temperature range from 500 to 800 The relationship between the strain amplitude and the number of stress reversals was given. The behavior of cyclic hardening was observed for higher strain amplitudes at all testing temperatures and the lowcycle fatigue life generally decreased with increasing testing temperature for the same strain range. In addition, fracture surfaces of the fatigued samples were examined by using a scanning electron microscope. 展开更多
关键词 SUPERALLOY low cycle fatigue fatigue life
下载PDF
Low-cycle Fatigue Properties of an Ultrafine-grained Magnesium Alloy Processed by Equal-channel Angular Pressing 被引量:1
5
作者 朱荣 WU Yanjun JI Wenqing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第6期1029-1032,共4页
Magnesium alloy Mg-3%Al-1%Zn (AZ31) billets prepared from equal channel angular pressing (ECAP) were utilized in low-cycle fatigue tests in order to investigate their fatigue life. Fully reversed strain-controlled... Magnesium alloy Mg-3%Al-1%Zn (AZ31) billets prepared from equal channel angular pressing (ECAP) were utilized in low-cycle fatigue tests in order to investigate their fatigue life. Fully reversed strain-controlled tension-compression fatigue tests were conducted at the frequency of 1 Hz in ambient air. The microstructures were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The hysteresis loops of the ECAP processed and conventionally extruded samples display obviously different shapes in the total strain amplitude range from 0.2% to 0.6%. Accordingly, the low cycle fatigue lives of ECAP processed samples are found to be longer than those of extruded samples, which can be attributed to the different in the hysteresis energy incorporating tensile strain energy. 展开更多
关键词 magnesium alloy low cycle fatigue hysteresis energy fatigue life ECAP
下载PDF
Low-cycle fatigue behavior of K416B Ni-based superalloy at 650 ℃ 被引量:1
6
作者 XIE Jun SHU De-long +3 位作者 HOU Gui-chen YU Jin-jiang ZHOU Yi-zhou SUN Xiao-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2628-2635,共8页
A study on the low-cycle fatigue(LCF)behavior of K 416 B alloy was conducted at 650℃.According to the results,the LCF behavior of K 416 B alloy at 650℃ is mainly manifested as elastic deformation and the fatigue lif... A study on the low-cycle fatigue(LCF)behavior of K 416 B alloy was conducted at 650℃.According to the results,the LCF behavior of K 416 B alloy at 650℃ is mainly manifested as elastic deformation and the fatigue life of the alloy is determined by the level of material strength.When tension-compression fatigue occurs,the deformation mechanism of the alloy is reflected in the form of dislocation slip,and the deformation dislocations are bowed out in the matrix by Orowan mechanism,which leads to a dislocation configuration similar to the Frawk-Reed source.At the late stage of low-cycle fatigue,the fatigue-induced cracks develop from the alloy surface.As fatigue test proceeds,it is possible for the cracks to continue development along the regions of eutectic and the bulk M 6 C carbide due to stress concentration,thus causing the alloy to show cleavage fracture. 展开更多
关键词 K416B alloy low cycle fatigue deformation characteristics fatigue cracks
下载PDF
Low-cycle fatigue behavior of permanent mold cast and die-cast Al-Si-Cu-Mg alloys 被引量:2
7
作者 Chen Lijia Wang Di +1 位作者 Che Xin Li Feng 《China Foundry》 SCIE CAS 2012年第1期39-42,共4页
Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg ... Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg alloys at room temperature was investigated. The experimental results show that both permanent mold cast and die-cast AI-Si-Cu-Mg alloys mainly exhibit cyclic strain hardening. At the same total strain amplitude, the diecast AI-Si-Cu-Mg alloy shows higher cyclic deformation resistance and longer fatigue life than does the permanent mold cast AI-Si-Cu-Mg alloy. The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior, and can be described by the Basquin and Coffin-Manson equations, respectively. 展开更多
关键词 permanent mold cast DIE-CAST aluminum alloy low-cycle fatigue fatigue life cyclic stress response
下载PDF
Mechanical and low-cycle fatigue behavior of stainless reinforcing steel for earthquake engineering applications 被引量:1
8
作者 Yihui Zhou Yu-Chen OU +1 位作者 George C. Lee Jerome S. O'Connor 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期449-457,共9页
Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need ... Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need to be investigated. These include specified and actual yield strengths, tensile strengths, uniform elongations and low-cycle fatigue behavior. Three types of SRSs (Talley S24100, Talley 316LN and Talley 2205) were tested and the results are reported in this paper. They were compared with the properties of A706 carbon reinforcing steel (RS), which is typical for seismic applications, and MMFX II, which is a high strength, corrosion resistant RS. Low-cycle fatigue tests of the RS coupons were conducted under strain control with constant amplitude to obtain strain life models of the steels. Test results show that the SRSs have slightly lower moduli of elasticity, higher uniform elongations before necking, and better low-cycle fatigue performance than A706 and MMFX II. All five types of RSs tested satisfy the requirements of the ACI 318 code on the lower limit of the tensile to yield strength ratio. Except Talley 2205, the other four types of RSs investigated meet the ACI 318 requirement that the actual yield strength does not exceed the specified yield strength by more than 18 ksi (124 MPa). Among the three types of SRSs tested, Talley S24100 possesses the highest uniform elongation before necking, and the best low-cycle fatigue performance. 展开更多
关键词 Stainless reinforcing steel low-cycle fatigue seismic applications corrosion resistance
下载PDF
CYCLIC SOFTENING IN HOT-WORKING DIE STEELS DURING LOW-CYCLE FATIGUE 被引量:1
9
作者 HU Zhenhua XIAO Jiexuan Huazhong University of Science and Technology,Wuhan,China HU Zhenhua,Associate Professor,Huazhong University of Science and Technology,Wuhan 430074,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第3期199-203,共5页
The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening... The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening is featured in both steels hardened in different conditions under the strain controlled amplitude range of Δε_t/2=0.6-1.8×10^(-2).The softening effect mainly occurs in some initial cycles and the stress amplitude varies slightly in the sequential cycles,i.e.the softening effect is minified.No obvious stress saturation phenomenon was ob- served during the whole cyclic deformation.The TEM analysis shows that the cyclic softening is related to heterogenity of plastic deformation.The softening of the tested steels is caused by the formation of the dislocation cell structure with low density and low internal stress,and by the fragmentation and redissolution of fine carbides into matrix. 展开更多
关键词 low-cycle fatigue hot work die steel cyclic softening
下载PDF
High cycle fatigue behavior of the second generation single crystal superalloy DD6 被引量:13
10
作者 史振学 李嘉荣 +1 位作者 刘世忠 韩梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期998-1003,共6页
The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to de... The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to determine the initiation site and the failure mechanism. Evolution of the microstructure was investigated by TEM observation. The results show that fatigue limit of DD6 alloy with 0.34%Hf is a little smaller than that of the alloy with 0.10%Hf. The fatigue cracks initiated on the surface or near the surface of the specimens. The crack would propagate along { 111 } octahedral slip planes, rather than perpendicular to the loading axis of specimen. Typical fatigue striation formed in steady propagation of fatigue crack. The fracture mechanisms of the high cycle fatigue of DD6 alloys with 0.10%Hf and 0.34%Hf are quasi-cleavage fracture. Different types of dislocation structures were developed during high cycle fatigue deformation. 展开更多
关键词 HF single crystal superalloy DD6 high cycle fatigue
下载PDF
Low cycle fatigue behavior of T4-treated Al-Zn-Mg-Cu alloys prepared by squeeze casting and gravity die casting 被引量:6
11
作者 郑成坤 张卫文 +1 位作者 张大童 李元元 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3505-3514,共10页
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m... Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface. 展开更多
关键词 Al-Zn-Mg-Cu alloy squeeze casting gravity die casting microstructure mechanical properties low cycle fatigue
下载PDF
GIGACYCLE FATIGUE BEHAVIOR OF CAST ALUMINUM IN TENSION AND TORSION LOADING 被引量:3
12
作者 薛红前 吴铁鹰 Bathias C 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期32-37,共6页
An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion f... An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion fatigue system is presented.The effects of loading condition and frequency on the very high cycle fatigue(VHCF)are investigated.The cyclic loading in axial and torsion at 35 Hz and 20 kHz with stress ratio R=-1 is used respectively to demonstrate the effect of loading condition.S-N curves show that the fatigue failure occurs in the range of 105—1010 cycles in axial or torsion loading and the asymptote of S-N curve is inclined,but no fatigue limit exists under the torsion and axial loading condition.The fatigue fracture surface shows that the fatigue crack initiates from the specimen surface subjected to the cyclic torsion loading.It is different from the fatigue fracture characteristic in axial loading in which fatigue crack initiates from subsurface defect in very high cycle regime.The fatigue initiation is on the maximum shear plane,the overall crack orientation is on a typical spiral 45° to the fracture plane and it is the maximum principle stress plane.The clear shear strip in the torsion fatigue fracture surface shows that the torsion fracture is the shear fracture. 展开更多
关键词 fatigue testing torsion fatigue very high cycle fatigue(VHCF) torsion loading cast aluminum
下载PDF
INVESTIGATION OF THE LOW-CYCLE FATIGUE AND FATIGUE CRACK GROWTH BEHAVIORS OF P91 BASE METAL AND WELD JOINTS
13
作者 H.C.Yang Y.Tu +1 位作者 M.M.Yu J.Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期597-600,共4页
Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, a... Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, and the changes in fatigue life behavior and fatigue growth rates with increasing temperature were discussed. The different properties of the base metal and its weld joint have been analyzed. 展开更多
关键词 P91 pipe low-cycle fatigue fatigue crack growth
下载PDF
A NEW CYCLIC J-INTEGRAL FOR LOW-CYCLE FATIGUE CRACK GROWTH
14
作者 胡宏玖 郭兴明 +2 位作者 李培宁 谢禹钧 李洁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第2期149-160,共12页
The constitutive equation under the low-cycle fatigue (LCF) was discussed, and a two-dimensional (2-D) model for simulating fatigue crack extension was put forward in order to propose a new cyclic J-integral. The ... The constitutive equation under the low-cycle fatigue (LCF) was discussed, and a two-dimensional (2-D) model for simulating fatigue crack extension was put forward in order to propose a new cyclic J-integral. The definition, primary characteristics, physical interpretations and numerical evaluation of the new parameter were investigated in detail. Moreover, the new cyclic J-integral for LCF behaviors was validated by the compact tension (CT) specimens. Results show that the calculated values of the new parameter can correlate well with LCF crack growth rate, during constant-amplitude loading. In addition, the phenomenon of fatigue retardation was explained through the viewpoint of energy based on the concept of the new parameter. 展开更多
关键词 cyclic J-integral low-cycle fatigue constitutive equation numerical evaluation fatigue retardation
下载PDF
Enhancing fatigue performance of AZ31 magnesium alloy components fabricated by cold metal transfer-based wire arc directed energy deposition through LPB
15
作者 Shambhu Kumar Manjhi Srikanth Bontha A.S.S.Balan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1638-1662,共25页
Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susc... Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susceptibility to fatigue of CMT-WA-DED-produced AZ31 Mg alloy components has impeded their widespread adoption for critical load-bearing applications.In this study,a comprehensive investigation into the fatigue behaviour of WA-DED-fabricated AZ31 Mg alloy has been carried out and compared to commercially available wrought AZ31 alloy.Our findings indicate that the as-deposited parts exhibit a lower fatigue life than wrought Mg alloy,primarily due to poor surface finish,tensile residual stress,porosity,and coarse grain microstructure inherent in the WA-DED process.Low Plasticity Burnishing(LPB)treatment is applied to mitigate these issues,which induce significant plastic deformation on the surface.This treatment resulted in a remarkable improvement of fatigue life by 42%,accompanied by a reduction in surface roughness,grain refinement and enhancement of compressive residual stress levels.Furthermore,during cyclic deformation,WA-DED specimens exhibited higher plasticity and dislocation density compared to both wrought and WA-DED+LPB specimens.A higher fraction of Low Angle Grain Boundaries(LAGBs)in WA-DED specimens contributed to multiple crack initiation sites and convoluted crack paths,ultimately leading to premature failure.In contrast,wrought and WA-DED+LPB specimens displayed a higher percentage of High Angle Grain Boundaries(HAGBs),which hindered dislocation movement and resulted in fewer crack initiation sites and less complex crack paths,thereby extending fatigue life.These findings underscore the effectiveness of LPB as a post-processing technique to enhance the fatigue performance of WA-DED-fabricated AZ31 Mg alloy components.Our study highlights the importance of LPB surface treatment on AZ31 Mg components produced by CMT-WA-DED to remove surface defects,enabling their widespread use in load-bearing applications. 展开更多
关键词 Wire arc additive manufacturing AZ31 Mg alloy Low plasticity burnishing Low cycle fatigue test Strain amplitude
下载PDF
Low cycle fatigue behavior of laser melting deposited TC18 titanium alloy 被引量:7
16
作者 李真 田象军 +1 位作者 汤海波 王华明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2591-2597,共7页
Low cycle fatigue (LCF) behavior of laser melting deposited (LMD) TC18 titanium alloy was studied at room temperature. Microstructure consisting of fine lamella-like primary α phase and transformed β matrix was ... Low cycle fatigue (LCF) behavior of laser melting deposited (LMD) TC18 titanium alloy was studied at room temperature. Microstructure consisting of fine lamella-like primary α phase and transformed β matrix was obtained by double annealed treatment, and inhomogeneous grain boundaryαphase was detected. Fatigue fracture surfaces and longitudinal sections of LCF specimens were examined by optical microscopy and scanning electron microscopy. Results indicate that more than one crack initiation site can be detected on the LCF fracture surface. The fracture morphology of the secondary crack initiation site is different from that of the primary crack initiation site. When the crack grows along the grain boundaryαphase, continuous grain boundaryαphase leads to a straight propagating manner while discontinuous grain boundaryαphase gives rise to flexural propagating mode. 展开更多
关键词 titanium alloy low cycle fatigue laser melting deposition
下载PDF
INVESTIGATION OF LOW CYCLE FATIGUE BEHAVIOROF BUILDING STRUCTURAL STEELS UNDEREARTHQUAKE LOADING 被引量:17
17
作者 G.M Sheng and S.H Gong(Department of Metallurgy and Materials Engineering, Chongqing University Chongqing 630044, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1997年第1期51-55,共5页
Based on the failure model of building structural steels under earthquake loading, the low cycle fatigue test at constant strain, the stochastical fatigue test under real earthquake load spectrum and the structural fa... Based on the failure model of building structural steels under earthquake loading, the low cycle fatigue test at constant strain, the stochastical fatigue test under real earthquake load spectrum and the structural fatigue test are carried out. The experimental results show that microalloying of V Ti and Nb can improve the anti-seismic propersties of steel bars. In the high strain and shori life range, both the static strength and ductility of steels are very important to increasing the low cycle fatigue resistance of steels. 展开更多
关键词 low cycle fatigue EARTHQUAKE building structural steel MICROALLOYING
下载PDF
EFFECT OF REVERT RECYCLE TIMES ON MICROSTRUCTURE AND FATIGUE PROPERTIES IN COBALT-BASE SUPERALLOY K640S 被引量:6
18
作者 T.L. Wang 1,2) , J.T. Guo 1) , D.S. Xia 2) , Y.Wang 1) and H.C. Yang 2) 1) Institute of Metal Research, Chinese Academy of Science, Shenyang 110015,China 2) Material and Metallurgical Institute Northeastern University, Shenyang 110 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期899-902,共4页
Effect of revert cycles on microstructure and fatigue properties of cast cobalt base superalloy K640S has been investigated. The results show that: at 70 times of cool heat cycles, there were microcracks found in seve... Effect of revert cycles on microstructure and fatigue properties of cast cobalt base superalloy K640S has been investigated. The results show that: at 70 times of cool heat cycles, there were microcracks found in seven times revert and ten times revert. With the increasing of thermal fatigue cycles, the crack of revert grows a little faster than virgin. When the cycle time reaches 200, the crack length for both virgin and reverts have been as long as 2mm. The low cycle fatigue life has no remarkable change, with the increase of revert cycles at 815℃, 360MPa ,0 5Hz. With the times of cycles increasing, it is found that the content of impurity and gas in alloy change a little, and there is no obvious change for dendrite microstructure. 展开更多
关键词 REVERT cobalt-base SUPERALLOY thermal fatigue low cycle fatigue MICROSTRUCTURE
下载PDF
Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime 被引量:15
19
作者 Chao Gu Yan-ping Bao +2 位作者 Peng Gan Min Wang Jin-shan He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第6期623-629,共7页
This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed... This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions(Al2 O3, Mg O-Al2 O3) and the matrix, while other cracks originated from the interior of inclusions(Ti N, Mn S). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel. 展开更多
关键词 very high cycle fatigue bearing steel INCLUSIONS tessellated slress crack initiation
下载PDF
Effects of recrystallization on the low cycle fatigue behavior of directionally solidified superalloy DZ40M 被引量:9
20
作者 ZHAO Yang WANG Lei LI Hongyun YU Teng LIU Yang 《Rare Metals》 SCIE EI CAS CSCD 2008年第4期425-428,共4页
The effects of recrystallization on low cycle fatigue behavior were investigated on directionally solidified Co-base superalloy DZ40M. Optical microscopy and SEM were used to examine the microstructure and fracture su... The effects of recrystallization on low cycle fatigue behavior were investigated on directionally solidified Co-base superalloy DZ40M. Optical microscopy and SEM were used to examine the microstructure and fracture surface of the specimens. The mechanical testing results demonstrated that the low cycle fatigue property of DZ40M significantly decreased with the partial recrystallization. Fatigue cracks initiate near the carbides and the grain boundaries with slip-bands. Both the fatigue crack initiation and propagation can be accelerated with the occurrences of recrystallized grain boundaries. 展开更多
关键词 Co-base superalloy low cycle fatigue RECRYSTALLIZATION crack initiation crack propagation
下载PDF
上一页 1 2 132 下一页 到第
使用帮助 返回顶部