A finite element method(FEM) for the numerical simulation of the columnar part of the mould-temperature-control solidification(MTCS) process was presented. The latent heat was taken into account and 3D transient heat ...A finite element method(FEM) for the numerical simulation of the columnar part of the mould-temperature-control solidification(MTCS) process was presented. The latent heat was taken into account and 3D transient heat transfer analysis was carried out by using the developed FEM software. The relative errors between the numerical and experimental data are less than 6%. Three MTCS cases were computed with this method. The first case only opens the cooling channels in the bottom of the mold. The second case individually controls the separate 7 groups of cooling channels by giving 7 control points. When the temperature of a control point reaches the preset value of 400℃, the corresponding channel will be opened. The third case opens all the cooling channels at the same time. The results indicate that in the second case, the solid-liquid interface keeps near-planar. The growth velocity of the solid-liquid interface is 0.3-0.4 mm/s, which is greater than 0.1-0.3 mm/s of the first case, performing better than the others. Thus the forming quality and efficiency part interior can be improved by mold-temperature-control and the numerical model is validated. The numerical simulation of MTCS can provide an available tool for the advanced investigation on the defect improvement and the crystal’s quality.展开更多
为防止卡车在长时间刹车后,刹车鼓温度过热或高负载情况下差速器油温过高而发生事故,文章设计一种基于STM32F429和STM32F103单片机协同工作的卡车刹车鼓温度、差速器油温监控与预测系统。该系统以STM32F429单片机为主处理器,利用控制器...为防止卡车在长时间刹车后,刹车鼓温度过热或高负载情况下差速器油温过高而发生事故,文章设计一种基于STM32F429和STM32F103单片机协同工作的卡车刹车鼓温度、差速器油温监控与预测系统。该系统以STM32F429单片机为主处理器,利用控制器局域网(controller area network,CAN)总线和以STM32F103为核心的从处理器进行及时数据传输和存储,并融入STemWin系统设计人机交互界面,基于自回归求积移动平均理论建立温度预测模型。仿真结果表明:该系统稳定可靠、预测精准,能有效减少因刹车鼓温度或差速器油温过高而引起的事故。展开更多
文摘A finite element method(FEM) for the numerical simulation of the columnar part of the mould-temperature-control solidification(MTCS) process was presented. The latent heat was taken into account and 3D transient heat transfer analysis was carried out by using the developed FEM software. The relative errors between the numerical and experimental data are less than 6%. Three MTCS cases were computed with this method. The first case only opens the cooling channels in the bottom of the mold. The second case individually controls the separate 7 groups of cooling channels by giving 7 control points. When the temperature of a control point reaches the preset value of 400℃, the corresponding channel will be opened. The third case opens all the cooling channels at the same time. The results indicate that in the second case, the solid-liquid interface keeps near-planar. The growth velocity of the solid-liquid interface is 0.3-0.4 mm/s, which is greater than 0.1-0.3 mm/s of the first case, performing better than the others. Thus the forming quality and efficiency part interior can be improved by mold-temperature-control and the numerical model is validated. The numerical simulation of MTCS can provide an available tool for the advanced investigation on the defect improvement and the crystal’s quality.
文摘为防止卡车在长时间刹车后,刹车鼓温度过热或高负载情况下差速器油温过高而发生事故,文章设计一种基于STM32F429和STM32F103单片机协同工作的卡车刹车鼓温度、差速器油温监控与预测系统。该系统以STM32F429单片机为主处理器,利用控制器局域网(controller area network,CAN)总线和以STM32F103为核心的从处理器进行及时数据传输和存储,并融入STemWin系统设计人机交互界面,基于自回归求积移动平均理论建立温度预测模型。仿真结果表明:该系统稳定可靠、预测精准,能有效减少因刹车鼓温度或差速器油温过高而引起的事故。