The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize...The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction.展开更多
The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion c...The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is inves- tigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black DiamondTM samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.展开更多
This paper investigates the capacitance-voltage (C-V) characteristics of F doping SiCOH low dielectric constant films metal-insulator-semiconductor structure. The F doping SiCOH films are deposited by decamethylcycl...This paper investigates the capacitance-voltage (C-V) characteristics of F doping SiCOH low dielectric constant films metal-insulator-semiconductor structure. The F doping SiCOH films are deposited by decamethylcyclopentasilox-ane [DMCPS) and trifluromethane (CHF3) electron cyclotron resonance plasmas. With the CHF3/DMCPS flow rate ratio from 0 to 0.52, the positive excursion of C-V curves and the increase of fiat-band voltage VFB from -6.1 V to 32.2V are obtained. The excursion of C-V curves and the shift of VFB are related to the change of defects density and type at the Si/SiCOH interface due to the decrease of Si and O concentrations, and the increase of F concentration. At the CHF3/DMCPS flow rate ratio is 0.12, the compensation of F-bonding dangling bond to Si dangling bond leads to a small VFB of 2.0V.展开更多
This work investigated C2F6/O2/Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the in...This work investigated C2F6/O2/Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the increase in the low-frequency (LF) power led to an increased ion impact, prompting the dissociation of C2F6 with higher reaction energy. As a result, fluorocarbon radicals with a high F/C ratio decreased. The increase in the discharge pressure led to a decrease in the electron temperature, resulting in the decrease of C2F6 dissociation. For the C2F6/O2/Ar plasma, the increase in the LF power prompted the reaction between 02 and C2F6, resulting in the elimination of CF3 and CF2 radicals, and the production of an F-rich plasma environment. The F-rich plasma improved the etching characteristics of SiCOH low-k films, leading to a high etching rate and a smooth etched surface.展开更多
The characteristics of SiCOH low dielectric constant film treated by a trifluromethane (CHF3) electron cyclotron resonance (ECR) plasma was investigated. The flat-band voltage VFB and leakage current of the Cu/SiC...The characteristics of SiCOH low dielectric constant film treated by a trifluromethane (CHF3) electron cyclotron resonance (ECR) plasma was investigated. The flat-band voltage VFB and leakage current of the Cu/SiCOH/Si structure, and the hydrophobic property of the SiCOH film were obtained by the measurements of capacitance-voltage, current-voltage and water contact angle. The structures of the SiCOH film were also analyzed by Fourier transform infrared spectroscopy and atomic force microscopy. The CHF3 plasma treatment of the SiCOH film led to a reduction in both the fiat-band voltage VFB shift and leakage current of the Cu/SiCOH/Si structure, a decrease in surface roughness, and a deterioration of the hydrophobic property. The changes in the film's characteristics were related to the formation of Si-F bond, the increase in Si-OH bond, and the C:F deposition at the surface of the SiCOH film.展开更多
With the progress of ULSI technology, materials with low dielectric constant are required to replace SiO2 film as the interlayer to scale down the interconnection delay. Fluorinated Si oxide thin films (SiOF) are a pr...With the progress of ULSI technology, materials with low dielectric constant are required to replace SiO2 film as the interlayer to scale down the interconnection delay. Fluorinated Si oxide thin films (SiOF) are a promising material for the low dielectric constant and the process compatibility in existing technology. However, SiOF films are liable to absorb moisture when exposed to air. By treating the SiOF films with O-2 plasma, it was found that the moisture resistibility of SiOF films was remarkably improved. The mechanism of the improvement in stability of dielectric constant was investigated. The results show that: 1) F atoms dissociated from the films and the bond angle of Si-O-Si decreased. 2) The plasma treatment enhanced the strength of Si-F bonds by removing unstable =SiF2 structures in the films. Resistibility of SiOF films in moisture was improved.展开更多
Cordierite is a promising low-k material in mi cr oelectronic and packaging industries. When it is co-fired with the metal for re alising the multilayer circuits, temperature should be low enough to prevent the meltin...Cordierite is a promising low-k material in mi cr oelectronic and packaging industries. When it is co-fired with the metal for re alising the multilayer circuits, temperature should be low enough to prevent the melting and/or oxidising of the metal. However, this temperature is usually too low to sinter cordierite. Low melting point glass, therefore, is added to the s toichiometric cordierite to lower the sintering temperature through a liquid-si ntering process. In this research work, cordierite-based glass ceramics tapes were prepared by t ape casting from suspensions containing different solids loading and different m ean particle sizes. The optimal experimental conditions for obtaining homogenous green tapes were determined by varying the type and concentration of dispersant s and binders, the solids loading as well as the particle sizes of both cordieri te and glass. Scanning electron microscopy (SEM) and Hg porosimetry were used to characterise the green tapes. The results showed that high values of solids vol ume fractions and of the size ratio between the mean particle sizes of glass and cordierite powders favour the obtaining of homogeneous and high dense substrate s. The dielectric constant of the sintered bodies at 1 100 ℃ was around 5 and t he dissipation factor was about 0.01 at 1 MHz.展开更多
随着器件的关键尺寸(Critical Dimension)愈来愈小及导线层数的急剧增加,电阻/电容时间延迟(RC Time Delay)将严重影响整体电路的运行速度。为了改善随着金属联机线宽缩小所造成的时间延迟以及电子迁移可靠性问题,选择比铝合金更低的电...随着器件的关键尺寸(Critical Dimension)愈来愈小及导线层数的急剧增加,电阻/电容时间延迟(RC Time Delay)将严重影响整体电路的运行速度。为了改善随着金属联机线宽缩小所造成的时间延迟以及电子迁移可靠性问题,选择比铝合金更低的电阻率与更高的抗电子迁移破坏能力的铜导线材料,替换原来的铝合金金属是必要的。展开更多
A novel partial silicon-on-insulator (PSOI) high voltage device with a low-k (relative permittivity) dielectric buried layer (LK PSOI) and its breakdown mechanism are presented and investigated by MEDICI. At a l...A novel partial silicon-on-insulator (PSOI) high voltage device with a low-k (relative permittivity) dielectric buried layer (LK PSOI) and its breakdown mechanism are presented and investigated by MEDICI. At a low k value the electric field strength in the dielectric buried layer (EI) is enhanced and a Si window makes the substrate share the vertical drop, resulting in a high vertical breakdown voltage; in the lateral direction, a high electric field peak is introduced at the Si window, which modulates the electric field distribution in the SOI layer; consequently, a high breakdown voltage (BV) is obtained. The values of EI and BV of LK PSOI with ki = 2 on a 2μm thick SOI layer over 1μm thick buried layer are enhanced by 74% and 19%, respectively, compared with those of the conventional PSOI. Furthermore, the Si window also alleviates the self-heating effect.展开更多
High-performance low-k and low-loss circuit materials are urgently needed in the field of microelectronics due to the upcoming FifthGeneration Mobile Communications Technology(5 G Technology).Herein,a facile design st...High-performance low-k and low-loss circuit materials are urgently needed in the field of microelectronics due to the upcoming FifthGeneration Mobile Communications Technology(5 G Technology).Herein,a facile design strategy for non-fluorinated intrinsic low-k and low-loss polyimides is reported by fully considering the secondary relaxation behaviors of the polymer chains.A new amorphous non-fluorinated polymer(TmBPPA)with a k value of 2.23 and a loss tangent lower than 3.94×10^-3 at 104 Hz has been designed and synthesized,which to the best of our knowledge is the lowest value amongst the non-fluorinated and non-porous polymers reported in literature.Meanwhile,TmBPPA exhibits excellent overall properties,such as excellent thermostability,good mechanical properties,low moisture absorption,and high bonding strength.As high-performance flexible circuit materials,all these characteristics are highly expected to meet the present and future demands for high density,high speed,and high frequency electronic circuit used in 5 G wireless networks.展开更多
Low-k interconnection is one of the key concepts in the development of high-speed ultra-large-scale integrated(ULSI) circuits.To determine the Young's modulus of ultra thin,low hardness and fragile low-k porous fil...Low-k interconnection is one of the key concepts in the development of high-speed ultra-large-scale integrated(ULSI) circuits.To determine the Young's modulus of ultra thin,low hardness and fragile low-k porous films more accurately,a wideband differential confocal configured laser detected and laser-generated surface acoustic wave(DCC/LD LSAW) detection system is developed.Based on the light deflection sensitivity detection principle, with a novel differential confocal configuration,this DCC/LD LSAW system extends the traditional laser generated surface acoustic wave(LSAW) detection system's working frequency band,making the detected SAW signals less affected by the hard substrate and providing more information about the thin porous low-k film under test.Thus it has the ability to obtain more accurate measurement results.Its detecting principle is explained and a sample of porous silica film on Si(100) is tested.A procedure of fitting an experimental SAW dispersion curve with theoretical dispersion curves was carried out in the high frequency band newly achieved by the DCC/LD LSAW system.A comparison of the measurement results of the DCC/LD LSAW with those from the traditional LSAW shows that this newly developed DCC/LD LSAW can dramatically improve the Young's modulus measuring accuracy of such porous low-k films.展开更多
A novel silicon-on-insulator(SOI) MOSFET with a variable low-k dielectric trench(LDT MOSFET) is proposed and its performance and characteristics are investigated.The trench in the drift region between drain and so...A novel silicon-on-insulator(SOI) MOSFET with a variable low-k dielectric trench(LDT MOSFET) is proposed and its performance and characteristics are investigated.The trench in the drift region between drain and source is filled with low-k dielectric to extend the effective drift region.At OFF state,the low-k dielectric trench(LDT) can sustain high voltage and enhance the dielectric field due to the accumulation of ionized charges. At the same time,the vertical dielectric field in the buried oxide can also be enhanced by these ionized charges. Additionally,ON-state analysis of LDT MOSFET demonstrates excellent forward characteristics,such as low gateto -drain charge density(〈 0.6 nC/mm^2) and a robust safe operating area(0-84 V).展开更多
文摘The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction.
基金Project supported by the National Natural Science Foundation of China(Grant No.60876072)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.10JCZDJC15500)
文摘The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is inves- tigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black DiamondTM samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10575074)
文摘This paper investigates the capacitance-voltage (C-V) characteristics of F doping SiCOH low dielectric constant films metal-insulator-semiconductor structure. The F doping SiCOH films are deposited by decamethylcyclopentasilox-ane [DMCPS) and trifluromethane (CHF3) electron cyclotron resonance plasmas. With the CHF3/DMCPS flow rate ratio from 0 to 0.52, the positive excursion of C-V curves and the increase of fiat-band voltage VFB from -6.1 V to 32.2V are obtained. The excursion of C-V curves and the shift of VFB are related to the change of defects density and type at the Si/SiCOH interface due to the decrease of Si and O concentrations, and the increase of F concentration. At the CHF3/DMCPS flow rate ratio is 0.12, the compensation of F-bonding dangling bond to Si dangling bond leads to a small VFB of 2.0V.
基金supported by National Natural Science Foundation of China(Nos.10975105,11075114)
文摘This work investigated C2F6/O2/Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the increase in the low-frequency (LF) power led to an increased ion impact, prompting the dissociation of C2F6 with higher reaction energy. As a result, fluorocarbon radicals with a high F/C ratio decreased. The increase in the discharge pressure led to a decrease in the electron temperature, resulting in the decrease of C2F6 dissociation. For the C2F6/O2/Ar plasma, the increase in the LF power prompted the reaction between 02 and C2F6, resulting in the elimination of CF3 and CF2 radicals, and the production of an F-rich plasma environment. The F-rich plasma improved the etching characteristics of SiCOH low-k films, leading to a high etching rate and a smooth etched surface.
基金supported by National Natural Science Foundation of China(Nos.10575074,10635010)
文摘The characteristics of SiCOH low dielectric constant film treated by a trifluromethane (CHF3) electron cyclotron resonance (ECR) plasma was investigated. The flat-band voltage VFB and leakage current of the Cu/SiCOH/Si structure, and the hydrophobic property of the SiCOH film were obtained by the measurements of capacitance-voltage, current-voltage and water contact angle. The structures of the SiCOH film were also analyzed by Fourier transform infrared spectroscopy and atomic force microscopy. The CHF3 plasma treatment of the SiCOH film led to a reduction in both the fiat-band voltage VFB shift and leakage current of the Cu/SiCOH/Si structure, a decrease in surface roughness, and a deterioration of the hydrophobic property. The changes in the film's characteristics were related to the formation of Si-F bond, the increase in Si-OH bond, and the C:F deposition at the surface of the SiCOH film.
基金The work was supported by the National Natural Science Foundation of China(No.69776026)the Foundation for University Key Teacher by the Ministry of Education.
文摘With the progress of ULSI technology, materials with low dielectric constant are required to replace SiO2 film as the interlayer to scale down the interconnection delay. Fluorinated Si oxide thin films (SiOF) are a promising material for the low dielectric constant and the process compatibility in existing technology. However, SiOF films are liable to absorb moisture when exposed to air. By treating the SiOF films with O-2 plasma, it was found that the moisture resistibility of SiOF films was remarkably improved. The mechanism of the improvement in stability of dielectric constant was investigated. The results show that: 1) F atoms dissociated from the films and the bond angle of Si-O-Si decreased. 2) The plasma treatment enhanced the strength of Si-F bonds by removing unstable =SiF2 structures in the films. Resistibility of SiOF films in moisture was improved.
文摘Cordierite is a promising low-k material in mi cr oelectronic and packaging industries. When it is co-fired with the metal for re alising the multilayer circuits, temperature should be low enough to prevent the melting and/or oxidising of the metal. However, this temperature is usually too low to sinter cordierite. Low melting point glass, therefore, is added to the s toichiometric cordierite to lower the sintering temperature through a liquid-si ntering process. In this research work, cordierite-based glass ceramics tapes were prepared by t ape casting from suspensions containing different solids loading and different m ean particle sizes. The optimal experimental conditions for obtaining homogenous green tapes were determined by varying the type and concentration of dispersant s and binders, the solids loading as well as the particle sizes of both cordieri te and glass. Scanning electron microscopy (SEM) and Hg porosimetry were used to characterise the green tapes. The results showed that high values of solids vol ume fractions and of the size ratio between the mean particle sizes of glass and cordierite powders favour the obtaining of homogeneous and high dense substrate s. The dielectric constant of the sintered bodies at 1 100 ℃ was around 5 and t he dissipation factor was about 0.01 at 1 MHz.
文摘随着器件的关键尺寸(Critical Dimension)愈来愈小及导线层数的急剧增加,电阻/电容时间延迟(RC Time Delay)将严重影响整体电路的运行速度。为了改善随着金属联机线宽缩小所造成的时间延迟以及电子迁移可靠性问题,选择比铝合金更低的电阻率与更高的抗电子迁移破坏能力的铜导线材料,替换原来的铝合金金属是必要的。
基金supported by the National Natural Science Foundation of China (Grant Nos. 60806025 and 60976060)the National Laboratory of Analog Integrated Circuit (Grant No. 9140C0903070904)the Youth Teacher Foundation of the University of Electronic Science and Technology of China (Grant No. jx0721)
文摘A novel partial silicon-on-insulator (PSOI) high voltage device with a low-k (relative permittivity) dielectric buried layer (LK PSOI) and its breakdown mechanism are presented and investigated by MEDICI. At a low k value the electric field strength in the dielectric buried layer (EI) is enhanced and a Si window makes the substrate share the vertical drop, resulting in a high vertical breakdown voltage; in the lateral direction, a high electric field peak is introduced at the Si window, which modulates the electric field distribution in the SOI layer; consequently, a high breakdown voltage (BV) is obtained. The values of EI and BV of LK PSOI with ki = 2 on a 2μm thick SOI layer over 1μm thick buried layer are enhanced by 74% and 19%, respectively, compared with those of the conventional PSOI. Furthermore, the Si window also alleviates the self-heating effect.
基金finincially supported by the National Natural Science Foundation of China (Nos. 51373204 and 51873239)the National 973 Program of China (No. 2014CB643605)+3 种基金the Science and Technology Project of Guangdong Province (Nos. 2015B090915003 and 2015B090913003)the Leading Scientific, Technical and Innovation Talents of Guangdong Special Support Program (No. 2016TX03C295)the China Postdoctoral Science Foundation (No. 2017M612801)the Fundamental Research Funds of Sun Yat-sen University
文摘High-performance low-k and low-loss circuit materials are urgently needed in the field of microelectronics due to the upcoming FifthGeneration Mobile Communications Technology(5 G Technology).Herein,a facile design strategy for non-fluorinated intrinsic low-k and low-loss polyimides is reported by fully considering the secondary relaxation behaviors of the polymer chains.A new amorphous non-fluorinated polymer(TmBPPA)with a k value of 2.23 and a loss tangent lower than 3.94×10^-3 at 104 Hz has been designed and synthesized,which to the best of our knowledge is the lowest value amongst the non-fluorinated and non-porous polymers reported in literature.Meanwhile,TmBPPA exhibits excellent overall properties,such as excellent thermostability,good mechanical properties,low moisture absorption,and high bonding strength.As high-performance flexible circuit materials,all these characteristics are highly expected to meet the present and future demands for high density,high speed,and high frequency electronic circuit used in 5 G wireless networks.
基金Project supported by the National Science Foundation of China(Nos.60723004,61072013)
文摘Low-k interconnection is one of the key concepts in the development of high-speed ultra-large-scale integrated(ULSI) circuits.To determine the Young's modulus of ultra thin,low hardness and fragile low-k porous films more accurately,a wideband differential confocal configured laser detected and laser-generated surface acoustic wave(DCC/LD LSAW) detection system is developed.Based on the light deflection sensitivity detection principle, with a novel differential confocal configuration,this DCC/LD LSAW system extends the traditional laser generated surface acoustic wave(LSAW) detection system's working frequency band,making the detected SAW signals less affected by the hard substrate and providing more information about the thin porous low-k film under test.Thus it has the ability to obtain more accurate measurement results.Its detecting principle is explained and a sample of porous silica film on Si(100) is tested.A procedure of fitting an experimental SAW dispersion curve with theoretical dispersion curves was carried out in the high frequency band newly achieved by the DCC/LD LSAW system.A comparison of the measurement results of the DCC/LD LSAW with those from the traditional LSAW shows that this newly developed DCC/LD LSAW can dramatically improve the Young's modulus measuring accuracy of such porous low-k films.
基金Project supported by the National Natural Science Foundation of China(Nos.60906037,60906038)the Fundamental Research Funds for the Central Universities,China(Nos.ZYGX2009J027,E022050205)the Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices
文摘A novel silicon-on-insulator(SOI) MOSFET with a variable low-k dielectric trench(LDT MOSFET) is proposed and its performance and characteristics are investigated.The trench in the drift region between drain and source is filled with low-k dielectric to extend the effective drift region.At OFF state,the low-k dielectric trench(LDT) can sustain high voltage and enhance the dielectric field due to the accumulation of ionized charges. At the same time,the vertical dielectric field in the buried oxide can also be enhanced by these ionized charges. Additionally,ON-state analysis of LDT MOSFET demonstrates excellent forward characteristics,such as low gateto -drain charge density(〈 0.6 nC/mm^2) and a robust safe operating area(0-84 V).