To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparat...To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization.展开更多
A method of activation roasting followed by acid leaching using titanium slag was introduced to prepare Ti-rich material. The effects of HaPO4 dosage, roasting temperature, and roasting time on TiO2 grade were investi...A method of activation roasting followed by acid leaching using titanium slag was introduced to prepare Ti-rich material. The effects of HaPO4 dosage, roasting temperature, and roasting time on TiO2 grade were investigated. A Ti-rich material containing 88.54% TiO2, 0.42% (CaO+MgO) was obtained when finely ground titanium slag was roasted with 7.5% H3PO4 at 1000 ℃ for 2 h, followed by a two-stage leaching in boiling dilute sulfuric acid for 2 h. The XRD patterns show that the product is titanium dioxide with a rutile structure. Mechanism studies show that structures of anosovite solid solution and silicate minerals are destroyed in the roasting process. As a result, titanium components in titanium slag are transformed into TiO2 (futile) while impurities are transformed into acid-soluble phosphate and quartz.展开更多
To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures rangi...To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.展开更多
A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of...A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of roasting temperature, particle size, and acid-to-ore mass ratio on the rate of roasting reaction were investigated. The results showed that the roasting reaction is fitted to a shrinking core model. The results of the kinetic experiment and SEM and EDAX analyses proved that the reaction rate of roasting high-titanium slag with concentrated sulfuric acid is controlled by the internal diffusion on the solid product layer. According to the Arrhenius expression, the apparent activation energy of the roasting reaction is 18.94 kJ/mol.展开更多
To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy ...To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy transformation, and the form of leach residues were made by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The result shows that the vana-dium slag is composed of major phases of fayalite, titanomagnetite, and spinel. During the high pressure oxidative acid leaching process, the fayalite and spinel phases are gradually decomposed by sulfuric acid, causing the release of vanadium and iron in the solution. Meanwhile, unreacted silicon and titanium are enriched in the leach residues. With the initial concentration of sulfuric acid at 250 g·L^-1, a leaching tem-perature of 140℃, a leaching time of 50 min, a liquid-solid ratio of 10:1 mL·g^-1, and oxygen pressure at 0.2 MPa, the leaching rate of vana-dium reaches 97.69%.展开更多
The technology of in situ immobilization with amendments is an important measure that remediates the soil contaminated by heavy metals, and selecting economical and effective amendments is the key. The effects and mec...The technology of in situ immobilization with amendments is an important measure that remediates the soil contaminated by heavy metals, and selecting economical and effective amendments is the key. The effects and mechanism of steel slag, the silicon-rich alkaline byproduct which can remediate acidic soil contaminated by heavy metal, are mainly introduced in this paper to provide theory reference for future research. Firstly, the paper analyzes current research situation of in situ immobilization with amendments. Then, it introduces the main physicochemical properties of steel slag, and the effect on soil pH value as well as heavy metal activity. Besides, the paper elaborates the promoting effect on silicon-requiring plant and the strengthening mechanism for its resistant capability of heavy metal. According to the analysis, the application of steel slag could be a potential valuable strategy to remediate acidic soil contaminated by heavy metal by modifying the transformation of heavy metals in both soil and plant, so that the translocation of heavy metal in food chain is reduced.展开更多
It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The le...It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The leaching mechanism ofdifferent valuable metals was studied.The results revealed that the leaching rates of Ag,Pb,Cu,Fe,As and Zn were99.91%,99.25%,95.12%,90.15%,87.58%and58.15%,respectively with6mol/L HCl and L/S ratio of10:1at60°C for120min.The actionof SiO2in leaching solution was also studied.The results showed that the precipitation and settlement of SiO2(amorphous)adsorbedpart of metal ions in solution,which greatly inhibited the leaching of Cu,Fe,As and Zn,so it is crucial to control the precipitation ofamorphous SiO2.展开更多
A two-step leaching method in combination of acid and ethylene diaminetetraacetic acid disodium (EDTA-Na2) was applied to extract metals such as Cd, Cu, Fe, Pb and Zn from a zinc smelting slag. The results show that...A two-step leaching method in combination of acid and ethylene diaminetetraacetic acid disodium (EDTA-Na2) was applied to extract metals such as Cd, Cu, Fe, Pb and Zn from a zinc smelting slag. The results show that the extraction rates of Cd, Cu, Fe and Zn in slag reach 88.3%, 54.1%, 69.6% and 54.7%, respectively, while the extraction rate of Pb is only 0.05% leached with 1.25 mol/L sulfuric acid under the conditions of the ratio of slag to liquid of 100 g/L, 65 ℃ and 120 r/min for 2 h. However, Pb extraction rate from 1.25 mol/L sulfuric acid leached residue reaches as high as 66.5% by using 0.1 mol/L EDTA-Na2 solution. The results indicate that two-step sequential extraction procedure combining 1.25 mol/L sulfuric acid and 0.1 mol/L EDTA-Na2 solution can extensively extract Cd, Cu, Fe, Pb and Zn from zinc smelting slag.展开更多
An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuri...An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuric acid curing and low concentration sulfuric acid leaching.The process parameters of sulfuric acid curing TBBFS were systematically studied.Under the optimal conditions,the recovery of titanium,aluminum,and magnesium reached 85.96%,81.17%,and 93.82%,respectively.The rapid leaching model was used to limit the dissolution and polymerization of silicon,and the dissolution of silicon was only 3.18%.The mechanism of sulfuric acid curing-leaching was investigated.During the curing process,the reaction occurred rapidly and released heat massively.Under the attack of hydrogen ions,the structure of TBBFS was destroyed,silicate was depolymerized to form filterable silica,and titanium,magnesium,aluminum,and calcium ions were replaced to form sulfates and enriched on the surface of silica particles.Titanium,aluminum,and magnesium were recovered in the leaching solution,and calcium sulfate and silica were enriched in the residue after leaching.This method could effectively avoid the formation of silica sol during the leaching process and accelerate the solid-liquid separation.展开更多
The deterioration of concrete by sulfuric acid attack in sewage environments has become a serious problem for many existing sewage structures. In this study, the properties of concrete using the blast furnace slag hav...The deterioration of concrete by sulfuric acid attack in sewage environments has become a serious problem for many existing sewage structures. In this study, the properties of concrete using the blast furnace slag have been examined. It was shown that by using the blast furnace slag fine aggregate and blast furnace slag fine powder, it is possible to enhance the resistance of mortar and concrete to sulfuric acid. The resistance to sulfuric acid of mortar and concrete can be improved by using a blast-furnace slag fine aggregate in the total amount of fine aggregate. When mortar or concrete reacts to sulfuric acid, dihydrated gypsum film is formed around the particulate of the fine aggregate. This dihydrated gypsum film could retard the penetration of sulfuric acid, thus, improving the resistance to sulfuric acid. Furthermore, it has been proved that the relationship between the erosion depth by sulfuric acid attack and the product of immersion period and concentration of sulfuric acid can be expressed linearly. However, this relationship is dependent on the type of materials of concrete.展开更多
Commercial coal production in the southern region of Brazil (comprising the Paraná, Santa Catarina, and Rio Grande do Sul states) has been occurring since the beginning of the twentieth century. Regarding the San...Commercial coal production in the southern region of Brazil (comprising the Paraná, Santa Catarina, and Rio Grande do Sul states) has been occurring since the beginning of the twentieth century. Regarding the Santa Catarina coalfields, about 60% - 65% of the ROM coal is discharged at dump deposits as waste. These wastes can lead to the formation of acid mine drainage (AMD), a source of ground and surface water pollution. One of the technologies used for preventing AMD consists of the alkaline additive method. Thus, the aim of this work was to study, at laboratory scale, the DAM control by blending coal waste with a metallurgical slag. A coal-tailing sample was collected from a coal mine, and the slag was obtained from a semi-integrated steel plant. Static tests were carried out by the acid-base account method to determine the balance between the acid-producing and acid-consuming (neutralizing) mineral components of the samples. Kinetic tests were conducted in humidity cells, following the ASTM D 5744-96 method, for a period of 80 weeks. The results showed that the coal tailing generates AMD. However, environmental problems can be minimized by mixing the coal waste with the metallurgical slag in 1:1 or 1:1.5 proportions. The kinetic experiments proved that, in this condition, the lixiviation presents a higher pH and a lower concentration of acidity, metals, and sulfate. Finally, it is possible to conclude that the blending slag in coal tailing deposits can be a viable alternative for DAM control in coal mining.展开更多
A new process of cryolite preparation is studied in this work by selecting a proper system of reaction and weeding impurity technology. The quality of artifial cryolite reaches and exceeds the first level of national ...A new process of cryolite preparation is studied in this work by selecting a proper system of reaction and weeding impurity technology. The quality of artifial cryolite reaches and exceeds the first level of national standard. The utilization efficient of fluoride-containing acid slag is above 99.5%. It brings considerable economic benefit, and the environment is improved.展开更多
A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the ...A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the recovery of vanadium was studied. The sintered samples were leached by H2SO4 solution and characterized by XRD, XPS, SEM and EDS techniques. Compared with the roasting process, the energy saving effect of the proposed process was also discussed. The results showed that vanadium-rich phases were formed and vanadium mainly existed in the forms of CaV2O5 and Ca2V2O7. The formation mechanism of calcium vanadates in the molten vanadium bearing slag was explained. The XRD and XPS results implied that there was a limit to the oxidation reaction of V(IV) to V(V) under the high temperatures even though oxygen-supply was sufficient. An increase in the CaO content led to an increase in the formation of Ca2V2O7. About 90%of the vanadium recovery was obtained under optimal experiment conditions (mass ratio of CaO to V2O5 of 0.6, particle size 120 to 150μm, leaching temperature 90 °C, leaching time 2 h, H2SO4 concentration 20%, liquid to solid ratio 5:1 mL/g, stirring speed 500 r/min). The energy of 1.85×106 kJ could be saved in every 1000 kg of vanadium bearing slag using the proposed process from the theoretical calculation results. Recovery of vanadium from the molten vanadium bearing slag and utilisation of its heat energy are important not only for saving metal resources, but also for energy saving and emission reduction.展开更多
A novel process of composite roasting with CaO/MgO and subsequent acid leaching was proposed to improve the recovery rate of vanadium from Linz–Donawiz(LD)converter vanadium slag.The effects of the MgO/(CaO+MgO)molar...A novel process of composite roasting with CaO/MgO and subsequent acid leaching was proposed to improve the recovery rate of vanadium from Linz–Donawiz(LD)converter vanadium slag.The effects of the MgO/(CaO+MgO)molar ratio and the roasting and leaching parameters on the recovery of vanadium were studied.The results showed that the leaching efficiency of vanadium decreased from 88%to 81%when CaO was replaced completely by MgO;however,it could be improved by roasting with the composite of CaO/MgO.The maximum vanadium leaching efficiency of 94%was achieved under the optimum MgO/(CaO+MgO)mole ratio of 0.5:1.The results from X-ray diffractometry(XRD)and scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM−EDS)confirm that the formation rate of acid-soluble vanadates can be enhanced during roasting with the composite of CaO/MgO and that the leaching kinetics can be accelerated owing to the suppression of calcium sulfate precipitation.展开更多
Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of ...Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.展开更多
基金Funded by the National Natural Science Foundation of China Youth Fund(No.52204419)the Liaoning Provincial Natural Science Foundation(No.2022-BS-076)the Guangxi Science and Technology Major Project(No.2021AA12013)。
文摘To realize the resource utilization of the valuable metals in the titanium-containing blast furnace slag,the process route of “hydrochloric acid leaching-electrolysis-carbonization and carbon dioxide capture-preparation of calcium carbonate” was proposed.In this study,the influences of process conditions on the leaching rates of calcium,magnesium,aluminum,and iron and the phases of the leaching residue were investigated for the leaching process.The experimental results show that the HCl solution could selectively leach the elements from the titanium-containing blast furnace slag.The better leaching conditions are the HCl solution concentration of 4 mol/L,the leaching time of 30 min,the ratio of liquid volume to solid gas of 10 mL/g,and the stirring paddle speed of 300 r/min.Under the conditions,the leaching rates of calcium,magnesium,aluminum,and iron can reach 85.87%,73.41%,81.35%,and 59.08%,and the leaching rate of titanium is 10.71%.The iron and the aluminum are removed from the leachate to obtain iron-aluminum water purification agents,and the magnesium is removed from the leachate to obtain magnesium hydroxide.The leaching residue phase is dominated by perovskite,followed by magnesium silicate and tricalcium aluminate,and the titaniumrich material could be obtained from the leaching residue by desiliconization.
基金Project(NCET-10-0834) supported by the Program for New Century Excellent Talents in University,China
文摘A method of activation roasting followed by acid leaching using titanium slag was introduced to prepare Ti-rich material. The effects of HaPO4 dosage, roasting temperature, and roasting time on TiO2 grade were investigated. A Ti-rich material containing 88.54% TiO2, 0.42% (CaO+MgO) was obtained when finely ground titanium slag was roasted with 7.5% H3PO4 at 1000 ℃ for 2 h, followed by a two-stage leaching in boiling dilute sulfuric acid for 2 h. The XRD patterns show that the product is titanium dioxide with a rutile structure. Mechanism studies show that structures of anosovite solid solution and silicate minerals are destroyed in the roasting process. As a result, titanium components in titanium slag are transformed into TiO2 (futile) while impurities are transformed into acid-soluble phosphate and quartz.
基金Project(2007CB613504)supported by the National Key Basic Research Program of ChinaProjects(51004033,50974035,51074047)supported by the National Natural Science Foundation of ChinaProject(2008BAB34B01)supported by National Science and Technology Support Plan of China during the 11th Five-Year Plan
文摘To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.
基金Project(2007CB613603)supported by the National Basic Research Program of China
文摘A novel method of roasting high-titanium slag with concentrated sulfuric acid was proposed to prepare titanium dioxide, and the roasting kinetics of titania was studied On the basis of roasting process. The effects of roasting temperature, particle size, and acid-to-ore mass ratio on the rate of roasting reaction were investigated. The results showed that the roasting reaction is fitted to a shrinking core model. The results of the kinetic experiment and SEM and EDAX analyses proved that the reaction rate of roasting high-titanium slag with concentrated sulfuric acid is controlled by the internal diffusion on the solid product layer. According to the Arrhenius expression, the apparent activation energy of the roasting reaction is 18.94 kJ/mol.
基金supported by the National High Technology Research and Development Program of China(No.2012AA062303)the National Natural Science Foundation of China(Nos.U1202274,51004033,and 51204040)the Doctoral Fund Project of China(No. 20120042110011)
文摘To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy transformation, and the form of leach residues were made by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The result shows that the vana-dium slag is composed of major phases of fayalite, titanomagnetite, and spinel. During the high pressure oxidative acid leaching process, the fayalite and spinel phases are gradually decomposed by sulfuric acid, causing the release of vanadium and iron in the solution. Meanwhile, unreacted silicon and titanium are enriched in the leach residues. With the initial concentration of sulfuric acid at 250 g·L^-1, a leaching tem-perature of 140℃, a leaching time of 50 min, a liquid-solid ratio of 10:1 mL·g^-1, and oxygen pressure at 0.2 MPa, the leaching rate of vana-dium reaches 97.69%.
文摘The technology of in situ immobilization with amendments is an important measure that remediates the soil contaminated by heavy metals, and selecting economical and effective amendments is the key. The effects and mechanism of steel slag, the silicon-rich alkaline byproduct which can remediate acidic soil contaminated by heavy metal, are mainly introduced in this paper to provide theory reference for future research. Firstly, the paper analyzes current research situation of in situ immobilization with amendments. Then, it introduces the main physicochemical properties of steel slag, and the effect on soil pH value as well as heavy metal activity. Besides, the paper elaborates the promoting effect on silicon-requiring plant and the strengthening mechanism for its resistant capability of heavy metal. According to the analysis, the application of steel slag could be a potential valuable strategy to remediate acidic soil contaminated by heavy metal by modifying the transformation of heavy metals in both soil and plant, so that the translocation of heavy metal in food chain is reduced.
基金Project(51404307)supported by the National Natural Science Foundation of ChinaProject(2014CB643400)supported by the National Basic Research Program of China
文摘It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The leaching mechanism ofdifferent valuable metals was studied.The results revealed that the leaching rates of Ag,Pb,Cu,Fe,As and Zn were99.91%,99.25%,95.12%,90.15%,87.58%and58.15%,respectively with6mol/L HCl and L/S ratio of10:1at60°C for120min.The actionof SiO2in leaching solution was also studied.The results showed that the precipitation and settlement of SiO2(amorphous)adsorbedpart of metal ions in solution,which greatly inhibited the leaching of Cu,Fe,As and Zn,so it is crucial to control the precipitation ofamorphous SiO2.
基金Project(2011SK3262) supported by Science and Technology Program of Hunan Province,China
文摘A two-step leaching method in combination of acid and ethylene diaminetetraacetic acid disodium (EDTA-Na2) was applied to extract metals such as Cd, Cu, Fe, Pb and Zn from a zinc smelting slag. The results show that the extraction rates of Cd, Cu, Fe and Zn in slag reach 88.3%, 54.1%, 69.6% and 54.7%, respectively, while the extraction rate of Pb is only 0.05% leached with 1.25 mol/L sulfuric acid under the conditions of the ratio of slag to liquid of 100 g/L, 65 ℃ and 120 r/min for 2 h. However, Pb extraction rate from 1.25 mol/L sulfuric acid leached residue reaches as high as 66.5% by using 0.1 mol/L EDTA-Na2 solution. The results indicate that two-step sequential extraction procedure combining 1.25 mol/L sulfuric acid and 0.1 mol/L EDTA-Na2 solution can extensively extract Cd, Cu, Fe, Pb and Zn from zinc smelting slag.
基金financially supported by the National Key Projects for Fundamental Research and Development of China(No.2016YFB0600904)the Sichuan University-Panzhihua city joint strategic cooperation special fund project,China(No.2018CDPZH-7)。
文摘An energy-efficient route was adopted to treat titanium-bearing blast furnace slag(TBBFS)in this study.Titanium,aluminum,and magnesium were simultaneously extracted and silicon was separated by low temperature sulfuric acid curing and low concentration sulfuric acid leaching.The process parameters of sulfuric acid curing TBBFS were systematically studied.Under the optimal conditions,the recovery of titanium,aluminum,and magnesium reached 85.96%,81.17%,and 93.82%,respectively.The rapid leaching model was used to limit the dissolution and polymerization of silicon,and the dissolution of silicon was only 3.18%.The mechanism of sulfuric acid curing-leaching was investigated.During the curing process,the reaction occurred rapidly and released heat massively.Under the attack of hydrogen ions,the structure of TBBFS was destroyed,silicate was depolymerized to form filterable silica,and titanium,magnesium,aluminum,and calcium ions were replaced to form sulfates and enriched on the surface of silica particles.Titanium,aluminum,and magnesium were recovered in the leaching solution,and calcium sulfate and silica were enriched in the residue after leaching.This method could effectively avoid the formation of silica sol during the leaching process and accelerate the solid-liquid separation.
文摘The deterioration of concrete by sulfuric acid attack in sewage environments has become a serious problem for many existing sewage structures. In this study, the properties of concrete using the blast furnace slag have been examined. It was shown that by using the blast furnace slag fine aggregate and blast furnace slag fine powder, it is possible to enhance the resistance of mortar and concrete to sulfuric acid. The resistance to sulfuric acid of mortar and concrete can be improved by using a blast-furnace slag fine aggregate in the total amount of fine aggregate. When mortar or concrete reacts to sulfuric acid, dihydrated gypsum film is formed around the particulate of the fine aggregate. This dihydrated gypsum film could retard the penetration of sulfuric acid, thus, improving the resistance to sulfuric acid. Furthermore, it has been proved that the relationship between the erosion depth by sulfuric acid attack and the product of immersion period and concentration of sulfuric acid can be expressed linearly. However, this relationship is dependent on the type of materials of concrete.
文摘Commercial coal production in the southern region of Brazil (comprising the Paraná, Santa Catarina, and Rio Grande do Sul states) has been occurring since the beginning of the twentieth century. Regarding the Santa Catarina coalfields, about 60% - 65% of the ROM coal is discharged at dump deposits as waste. These wastes can lead to the formation of acid mine drainage (AMD), a source of ground and surface water pollution. One of the technologies used for preventing AMD consists of the alkaline additive method. Thus, the aim of this work was to study, at laboratory scale, the DAM control by blending coal waste with a metallurgical slag. A coal-tailing sample was collected from a coal mine, and the slag was obtained from a semi-integrated steel plant. Static tests were carried out by the acid-base account method to determine the balance between the acid-producing and acid-consuming (neutralizing) mineral components of the samples. Kinetic tests were conducted in humidity cells, following the ASTM D 5744-96 method, for a period of 80 weeks. The results showed that the coal tailing generates AMD. However, environmental problems can be minimized by mixing the coal waste with the metallurgical slag in 1:1 or 1:1.5 proportions. The kinetic experiments proved that, in this condition, the lixiviation presents a higher pH and a lower concentration of acidity, metals, and sulfate. Finally, it is possible to conclude that the blending slag in coal tailing deposits can be a viable alternative for DAM control in coal mining.
文摘A new process of cryolite preparation is studied in this work by selecting a proper system of reaction and weeding impurity technology. The quality of artifial cryolite reaches and exceeds the first level of national standard. The utilization efficient of fluoride-containing acid slag is above 99.5%. It brings considerable economic benefit, and the environment is improved.
基金Project(2013CB632600)supported by the National Basic Research and Development Program of China
文摘A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the recovery of vanadium was studied. The sintered samples were leached by H2SO4 solution and characterized by XRD, XPS, SEM and EDS techniques. Compared with the roasting process, the energy saving effect of the proposed process was also discussed. The results showed that vanadium-rich phases were formed and vanadium mainly existed in the forms of CaV2O5 and Ca2V2O7. The formation mechanism of calcium vanadates in the molten vanadium bearing slag was explained. The XRD and XPS results implied that there was a limit to the oxidation reaction of V(IV) to V(V) under the high temperatures even though oxygen-supply was sufficient. An increase in the CaO content led to an increase in the formation of Ca2V2O7. About 90%of the vanadium recovery was obtained under optimal experiment conditions (mass ratio of CaO to V2O5 of 0.6, particle size 120 to 150μm, leaching temperature 90 °C, leaching time 2 h, H2SO4 concentration 20%, liquid to solid ratio 5:1 mL/g, stirring speed 500 r/min). The energy of 1.85×106 kJ could be saved in every 1000 kg of vanadium bearing slag using the proposed process from the theoretical calculation results. Recovery of vanadium from the molten vanadium bearing slag and utilisation of its heat energy are important not only for saving metal resources, but also for energy saving and emission reduction.
基金Project(2018M640898)supported by the China Postdoctoral Science FoundationProject(cstc2019jcyj-bshX0068)supported by the Natural Science Foundation of Chongqing,China+1 种基金Project(52004044)supported by the National Natural Science Foundation of ChinaProject(2018YFC1900500)supported by the National Key Research and Development Program of China。
文摘A novel process of composite roasting with CaO/MgO and subsequent acid leaching was proposed to improve the recovery rate of vanadium from Linz–Donawiz(LD)converter vanadium slag.The effects of the MgO/(CaO+MgO)molar ratio and the roasting and leaching parameters on the recovery of vanadium were studied.The results showed that the leaching efficiency of vanadium decreased from 88%to 81%when CaO was replaced completely by MgO;however,it could be improved by roasting with the composite of CaO/MgO.The maximum vanadium leaching efficiency of 94%was achieved under the optimum MgO/(CaO+MgO)mole ratio of 0.5:1.The results from X-ray diffractometry(XRD)and scanning electron microscopy with energy-dispersive X-ray spectroscopy(SEM−EDS)confirm that the formation rate of acid-soluble vanadates can be enhanced during roasting with the composite of CaO/MgO and that the leaching kinetics can be accelerated owing to the suppression of calcium sulfate precipitation.
文摘Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.