To verify the feasibility of high-affinity nitrate transporter gene (Nrt2) as an indicator of nitrogen status, changes in the transcript levels of transcripts associated with phosphate starvation and different nitra...To verify the feasibility of high-affinity nitrate transporter gene (Nrt2) as an indicator of nitrogen status, changes in the transcript levels of transcripts associated with phosphate starvation and different nitrate concentrations were studied using real-time quantitative reverse-transcription PCR (QRT-PCR) technology in batch cultures of Skeletonema costatum. The results show that compared with P-replete condition, P starvation could reduce the Nrt2 transcript levels apparently. Nrt2 transcript levels had a significant negative linear correlation with nitrate concentrations below 40 pmol/L. The results of 48 h short-term incubation experiment under different nitrate concentrations confirmed this correlation, and the following regression equation is built: y = -3.305x + 98.95, R2 = 0.988, where x represents nitrate concentrations (〈40 btmol/L) and y represents the Nrt2 transcript levels.展开更多
It is of great importance to better understand how trees regulate nitrogen(N) uptake under N deficiency conditions which severely challenge afforestation practices, yet the underlying molecular mechanisms have not bee...It is of great importance to better understand how trees regulate nitrogen(N) uptake under N deficiency conditions which severely challenge afforestation practices, yet the underlying molecular mechanisms have not been well elucidated. Here,we functionally characterized PuHox52, a Populus ussuriensis HD-ZIP transcription factor, whose overexpression greatly enhanced nutrient uptake and plant growth under N deficiency. We first conducted an RNA sequencing experiment to obtain root transcriptome using PuHox52-overexpression lines of P. ussuriensis under low N treatment. We then performed multiple genetic and phenotypic analyses to identify key target genes of PuHox52 and validated how they acted against N deficiency under PuHox52 regulation.PuHox52 was specifically induced in roots by N deficiency, and overexpression of PuHox52promoted N uptake, plant growth, and root development. We demonstrated that several nitrate-responsive genes(PuNRT1.1, PuNRT2.4,PuCLC-b, PuNIA2, PuNIR1, and PuNLP1),phosphate-responsive genes(PuPHL1A and PuPHL1B), and an iron transporter gene(PuIRT1) were substantiated to be direct targets of PuHox52. Among them, PuNRT1.1, PuPHL1A/B, and PuIRT1 were upregulated to relatively higher levels during PuHox52-mediated responses against N deficiency in PuHox52-overexpression lines compared to WT. Our study revealed a novel regulatory mechanism underlying root adaption to N deficiency where PuHox52 modulated a coordinated uptake of nitrate, phosphate, and iron through 'PuHox52-PuNRT1.1', 'PuHox52-PuPHL1A/PuPHL1B', and'PuHox52-PuIRT1' regulatory relationships in poplar roots.展开更多
基金The National Basic Research Program of China(973Program)under contract No.2010CB428706the National Natural Science Foundation of China for Creative Research Groups under contract No.41121064the National High Technology Research and Development Program of China under contract No.2008AA09Z107
文摘To verify the feasibility of high-affinity nitrate transporter gene (Nrt2) as an indicator of nitrogen status, changes in the transcript levels of transcripts associated with phosphate starvation and different nitrate concentrations were studied using real-time quantitative reverse-transcription PCR (QRT-PCR) technology in batch cultures of Skeletonema costatum. The results show that compared with P-replete condition, P starvation could reduce the Nrt2 transcript levels apparently. Nrt2 transcript levels had a significant negative linear correlation with nitrate concentrations below 40 pmol/L. The results of 48 h short-term incubation experiment under different nitrate concentrations confirmed this correlation, and the following regression equation is built: y = -3.305x + 98.95, R2 = 0.988, where x represents nitrate concentrations (〈40 btmol/L) and y represents the Nrt2 transcript levels.
基金supported by the NSFC (31971671)the Fundamental Research Funds for the Central Universities of China (2572018CL04)+1 种基金the China Postdoctoral Science Foundation (2021M700733)the Heilongjiang Touyan Innovation Team Program (Tree Genetics and Breeding Innovation Team)。
文摘It is of great importance to better understand how trees regulate nitrogen(N) uptake under N deficiency conditions which severely challenge afforestation practices, yet the underlying molecular mechanisms have not been well elucidated. Here,we functionally characterized PuHox52, a Populus ussuriensis HD-ZIP transcription factor, whose overexpression greatly enhanced nutrient uptake and plant growth under N deficiency. We first conducted an RNA sequencing experiment to obtain root transcriptome using PuHox52-overexpression lines of P. ussuriensis under low N treatment. We then performed multiple genetic and phenotypic analyses to identify key target genes of PuHox52 and validated how they acted against N deficiency under PuHox52 regulation.PuHox52 was specifically induced in roots by N deficiency, and overexpression of PuHox52promoted N uptake, plant growth, and root development. We demonstrated that several nitrate-responsive genes(PuNRT1.1, PuNRT2.4,PuCLC-b, PuNIA2, PuNIR1, and PuNLP1),phosphate-responsive genes(PuPHL1A and PuPHL1B), and an iron transporter gene(PuIRT1) were substantiated to be direct targets of PuHox52. Among them, PuNRT1.1, PuPHL1A/B, and PuIRT1 were upregulated to relatively higher levels during PuHox52-mediated responses against N deficiency in PuHox52-overexpression lines compared to WT. Our study revealed a novel regulatory mechanism underlying root adaption to N deficiency where PuHox52 modulated a coordinated uptake of nitrate, phosphate, and iron through 'PuHox52-PuNRT1.1', 'PuHox52-PuPHL1A/PuPHL1B', and'PuHox52-PuIRT1' regulatory relationships in poplar roots.