This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the exper...This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.展开更多
The digital economy,as a new emerging economic form,has become an important power for realizing Chinese-style modernization and promoting green development in China.This paper measures the digital economy and low-carb...The digital economy,as a new emerging economic form,has become an important power for realizing Chinese-style modernization and promoting green development in China.This paper measures the digital economy and low-carbon transition index based on the data of 30 provinces in China from 2013 to 2020 and analyzes the mechanism and path of the digital economy affecting low-carbon transition using the fixed effect panel data model and the threshold effect model.It is found that,(1)The digital economy and low-carbon transition in China are various in different regions,with characteristics of being unbalanced and insufficient.(2)The digital economy significantly promotes low-carbon transition,with the greatest influence in the Central region,followed by the Eastern region and the Western region.Under different dimensions,the development of informatization and digital transactions promote low-carbon transition,but the development of the internet plays an inhibiting role.(3)The higher the degree of urbanization and environmental regulation,the greater the influence of the digital economy on low-carbon transition.展开更多
To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake grap...To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.展开更多
In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.Th...In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.The data collection for this paper includes data on deep processing of Chinese coal products from 2009 to 2020,as well as data on asset structure evolution and financial performance of 34 listed companies in the Chinese coal mining.Entropy value method is used to calculate the entropy value of low-carbon transformation,and the regression analysis is used to study the performance of cleaner transformation,the conclusion is as follows:(1)From 2009 to 2020,in China’s total energy consumption,coal consumption accounted for 71.6%in 2009 and 56.8%in 2020,the goals set by the state have been achieved.(2)The national goal of reducing the proportion of coal consumption and reducing carbon emissions has forced the transformation of deep processing of coal products.The transformation of coal enterprises towards low-carbon and clean production has achieved remarkable results.(3)From 2009 to 2020,the non coal industry income of 34 listed companies in China’s coal mining industry increased by 8.21%annually.At the same time,the asset structure was adjusted,and nearly 80%of the asset structure evolution showed an orderly development trend.(4)The regression analysis results show that the entropy value of coal deep processing products and the entropy value of asset structure adjustment are significantly related to transformation performance.The paper proposes to summarize the successful experience of China’s coal energy economic transformation,lay a foundation for achieving the carbon peak and carbon neutral goals in the future,further increase the intensity of coal deep processing,increase the proportion of clean energy in total energy consumption,and strive to control asset operation towards the goal of increasing the proportion of non coal industry income.展开更多
Given the global focus on green and low-carbon development and the increasing prominence of digital finance,it is particularly important to explore how to leverage digital finance to achieve these environmental goals....Given the global focus on green and low-carbon development and the increasing prominence of digital finance,it is particularly important to explore how to leverage digital finance to achieve these environmental goals.This study,through mechanism analysis,deeply examines how China’s digital finance promotes green and low-carbon development and elucidates the positive interaction between digital finance and the green industry.The study found that digital finance,through more flexible and efficient financial functions,alters the cost structure of carbon emissions,and reduces the risks and costs of green investments,thereby creating a cooperative green mechanism benefiting all parties,and guiding social groups toward a green and low-carbon transformation.Additionally,the rapid development of digital finance has strengthened the implementation of environmental protection policies,effectively promoted the expansion of the environmental protection industry,and established the green ethos as a mainstream concept in financial development.This study aims to provide reference perspectives and suggestions,assist policymakers in promoting the green and lowcarbon development of digital finance,and offer insights into the integrated development of digital finance and the green environmental protection industry.展开更多
The effects of super absorbent polymers (SAP) on yield as well as water-saving and drought-escaping mechanism in spring maize in the seasonal drought region were studied. As shown by the results, during the seasonal...The effects of super absorbent polymers (SAP) on yield as well as water-saving and drought-escaping mechanism in spring maize in the seasonal drought region were studied. As shown by the results, during the seasonal drought in southern China, SAP treatment promoted the soil moisture, improved the capability of absorption and transportation of roots, promoted physiological and biochemical functions, increased the chlorophyll content, photosynthetic rate and intercellular CO2 concentration, and reduced the stomatal conductance and transplre.tion rate. As a result, the economic characters of spring maize were improved, and the yield was increased.展开更多
Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irr...Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irrigation technologies.Currently,there are few researches on this cooperative economic organization.In this study,connotations of cooperative economic organizations for water-saving irrigation are specifically defined,and the characteristics and functions of this cooperative economic organization are analyzed.Based on that,several suggestions are proposed on the continuous development of cooperative economic organizations for water-saving irrigation.展开更多
Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-sa...Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature.展开更多
In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six ...In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six greenhouses was calculated according to annual average precipitation 542.2 mm, up to 1 095.7 m^3. The upper natural slopes of cultivated land were as rainwater harvesting areas, and total annual rainwater harvesting amount was 49 242 m^3 on the mountain slopes with an area of 73.37 hm^2, while total water storage amount was 39 394 m^3 in theory, so it could meet water use for the irrigation of 26.28 hm^2 of T. sinensis land. To be convenient for rainwater harvesting, irrigation and supplying water to the water-saving cellars, one pert-cut and part-fill reservoir (which was 470 m^3 in volume) was built on the mountain slopes at the right rear of the greenhouses, and their altitude difference was 50 m. The reservoir was sealed and was built with reinforced concrete. Water-saving cellars were distributed in front and the middle and at the back of two rows of greenhouses, and they were connected with each other. The reservoir could supply water to the water-saving cellars and also collect water by mountain slopes, from the lower water-saving cellars or deep wells. Two rainwater hervesting ditches that were 1 650 m in length were at the lower edge of arable land in the upper reaches of slopes to intercept rainfall runoff and make it flow into channels and then the sedimentation tanks. The total annual rainwater harvesting amount of the reservoir and water-saving cellars was 1 222.5 m^3.展开更多
[Objective] This study aimed at exploring the utilization rate of water of the new water-saving rice variety "Luhan No.1" and providing references and basis for the further demonstration and extension.[Method] Water...[Objective] This study aimed at exploring the utilization rate of water of the new water-saving rice variety "Luhan No.1" and providing references and basis for the further demonstration and extension.[Method] Water-saving rice variety "Luhan No.1" and original receptor "6527" were used for dry processing without aquifer,and rice under regular irrigation conditions was used as the control.[Result] Under conditions which had economized on 67.4% of water compared with the regular irrigation,decreasing rates of 1 000-seed weight,seed setting rate,plant height and effective panicles of "Luhan No.1" were relatively small and had not achieved a significant level,while the decreasing rates of production of the region,total grains per panicle,theoretical production and filled grains per panicle of the original receptor "6527" were all over 25% and had attained very significant levels(P0.01).[Conclusion] "Luhan No.1" had shown stable production,energy conservation,reducing environmental pollution and other advantages under water-conservating cultivation conditions.展开更多
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa...Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.展开更多
The Hexi Corridor is an important base of agriculture development inNorthwest China. According to recent statistics, there are 65. 94 x 10~8m^3 of water resourcesavailable in the Hexi Corridor. At present, net consump...The Hexi Corridor is an important base of agriculture development inNorthwest China. According to recent statistics, there are 65. 94 x 10~8m^3 of water resourcesavailable in the Hexi Corridor. At present, net consumption in development and utilization is 43. 33x 10~8m^3. Water supply and demand reach a balance on the recent level of production, but loss ofevaporation and evapotranspiration is as much as 25. 69 x 1010~8m^3. So net use efficiency of waterresources is 59% Based on analyzing balance between water and land considering ecologicalenvironment at present, there exists the serious water shortage in the Shiyang River system whereirrigation lands have overloaded. There is a comparative balance between supply and demand of waterresource in the Heihe River system; and the Sule River system has some surplus water to extendirrigation land. Use of agriculture water accounts for 83. 3% and ecological forest and grass for 6.9% . The Hexi Corridor still has a great potential for water saving in agriculture production.Water-saving efficiency of irrigation is about 10% by using such traditional technologies as furrowand border-dike irrigation and small check irrigation, and water-saving with plastic film cover andtechniques of advanced sprinkler and drip/micro irrigation etc. can save more than 60% of irrigatedwater. Incremental irrigation area for water-saving potential in the Hexi Corridor has beenestimated as 56% - 197% to original irrigation area. So the second water sources can be developedfrom water saving agriculture in the Hexi Corridor under Development of the Western Part of China inlarge scale. This potential can be realized step by step through developing the water-savingmeasures, improving the ecological condition of oasis agriculture, and optimizing allocation ofwater resources in three river systems.展开更多
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ...The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.展开更多
On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide refe...On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation.展开更多
Water-saving and drought-resistance upland rice has become a preferable choice for cotton farmlands ready for changing crops or paddy fields with water in short,because simplified and mechanical cultivation can be app...Water-saving and drought-resistance upland rice has become a preferable choice for cotton farmlands ready for changing crops or paddy fields with water in short,because simplified and mechanical cultivation can be applied for the rice varieties of drought resistance and high yield.At present,it has been applied with an area of 400 000 hm2 in Hunan Province and the area continues growing.The research bred and introduced the relevant cultivation technology standard applicable to local water-saving and drought-resistance rice varieties in order to improve farmer's benefits.展开更多
Construction of "water-saving landscape architecture" is a crucial content of building "conservation-minded society'',an important approach of ensuring the sustainable development of landscaping...Construction of "water-saving landscape architecture" is a crucial content of building "conservation-minded society'',an important approach of ensuring the sustainable development of landscaping industry.It targets at exploring a reasonable means of using the nature,so as to improve ecological conditions and environment,save resources and energies,and promote the harmonious coexistence of man and nature.Landscape plant is a significant component of landscape architecture,it is a key section to choose proper drought-resistant plant species for the landscape construction.展开更多
The paper analyzed the important role of water saving in protecting the food safety,introduced the present development of agricultural water-saving technique,pointed out the potential risks of water resources,and prop...The paper analyzed the important role of water saving in protecting the food safety,introduced the present development of agricultural water-saving technique,pointed out the potential risks of water resources,and proposed the future development of water-saving irrigation.展开更多
Land degradation and desertification have become severe environmental problems in arid areas due to excessive use of water resources. It is urgent to reduce agricultural water use for ecological rehabilitation, which ...Land degradation and desertification have become severe environmental problems in arid areas due to excessive use of water resources. It is urgent to reduce agricultural water use for ecological rehabilitation, which may result in a decrease in agricultural production and farmer's welfare. This paper focused on the impacts of some main measures including extensions of watersaving irrigation, expanding solar green house and increasing off-farm employment, which are generally recognized to be important to alleviate water shortage and poverty. A bioconomic model is applied taking Minqin Oasis in Gansu Province as a case study site. Simulation results showed that the effect of expanding solar greenhouse was more positive than other ones so it drew more attention. On the view of the different effects between each irrigation zone, mixed policy patterns suitable for them are suggested. In Baqu, expanding solar greenhouse should be the most important, auxiliary with encouraging pipe irrigation. Inversely, with regard to Quanshan, the major attention should be paid to subsidy for pipe irrigation and it would be better to supply the off-farm employment opportunities to the households in Huqu, where the expanding of solar greenhouse should also be summoned. Finally, it should be noted that farmer's income would only resume to 90% of the current level in the short run by putting more effort into local policies. Thus, the ecological compensation is needed to ensure farmer's welfare.展开更多
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi...The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%.展开更多
To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistan...To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.展开更多
文摘This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.
基金supported by the Fund of Fujian Provincial Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era(Grant No.FJ2023XZB057)Major Project Fund of Fujian Provincial Social Science Research Base(Grant No.FJ2023JDZ021).
文摘The digital economy,as a new emerging economic form,has become an important power for realizing Chinese-style modernization and promoting green development in China.This paper measures the digital economy and low-carbon transition index based on the data of 30 provinces in China from 2013 to 2020 and analyzes the mechanism and path of the digital economy affecting low-carbon transition using the fixed effect panel data model and the threshold effect model.It is found that,(1)The digital economy and low-carbon transition in China are various in different regions,with characteristics of being unbalanced and insufficient.(2)The digital economy significantly promotes low-carbon transition,with the greatest influence in the Central region,followed by the Eastern region and the Western region.Under different dimensions,the development of informatization and digital transactions promote low-carbon transition,but the development of the internet plays an inhibiting role.(3)The higher the degree of urbanization and environmental regulation,the greater the influence of the digital economy on low-carbon transition.
文摘To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.
基金fund major project“Research on China’s Natural Resources Capitalization and Corresponding Market Construction”(No.:15zdb163)Construction project of key disciplines of business administration in Jiangsu Province during the 14th five-year plan(SJYH2022-2/285).
文摘In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.The data collection for this paper includes data on deep processing of Chinese coal products from 2009 to 2020,as well as data on asset structure evolution and financial performance of 34 listed companies in the Chinese coal mining.Entropy value method is used to calculate the entropy value of low-carbon transformation,and the regression analysis is used to study the performance of cleaner transformation,the conclusion is as follows:(1)From 2009 to 2020,in China’s total energy consumption,coal consumption accounted for 71.6%in 2009 and 56.8%in 2020,the goals set by the state have been achieved.(2)The national goal of reducing the proportion of coal consumption and reducing carbon emissions has forced the transformation of deep processing of coal products.The transformation of coal enterprises towards low-carbon and clean production has achieved remarkable results.(3)From 2009 to 2020,the non coal industry income of 34 listed companies in China’s coal mining industry increased by 8.21%annually.At the same time,the asset structure was adjusted,and nearly 80%of the asset structure evolution showed an orderly development trend.(4)The regression analysis results show that the entropy value of coal deep processing products and the entropy value of asset structure adjustment are significantly related to transformation performance.The paper proposes to summarize the successful experience of China’s coal energy economic transformation,lay a foundation for achieving the carbon peak and carbon neutral goals in the future,further increase the intensity of coal deep processing,increase the proportion of clean energy in total energy consumption,and strive to control asset operation towards the goal of increasing the proportion of non coal industry income.
文摘Given the global focus on green and low-carbon development and the increasing prominence of digital finance,it is particularly important to explore how to leverage digital finance to achieve these environmental goals.This study,through mechanism analysis,deeply examines how China’s digital finance promotes green and low-carbon development and elucidates the positive interaction between digital finance and the green industry.The study found that digital finance,through more flexible and efficient financial functions,alters the cost structure of carbon emissions,and reduces the risks and costs of green investments,thereby creating a cooperative green mechanism benefiting all parties,and guiding social groups toward a green and low-carbon transformation.Additionally,the rapid development of digital finance has strengthened the implementation of environmental protection policies,effectively promoted the expansion of the environmental protection industry,and established the green ethos as a mainstream concept in financial development.This study aims to provide reference perspectives and suggestions,assist policymakers in promoting the green and lowcarbon development of digital finance,and offer insights into the integrated development of digital finance and the green environmental protection industry.
基金Supported by Key Projects in the National Science&TechnologyPillar Program(2006BAD04B07-2)Sic-tech Innovation Projectof Hunan Academy of Agricultural Sciences(2009hnnkycx30)~~
文摘The effects of super absorbent polymers (SAP) on yield as well as water-saving and drought-escaping mechanism in spring maize in the seasonal drought region were studied. As shown by the results, during the seasonal drought in southern China, SAP treatment promoted the soil moisture, improved the capability of absorption and transportation of roots, promoted physiological and biochemical functions, increased the chlorophyll content, photosynthetic rate and intercellular CO2 concentration, and reduced the stomatal conductance and transplre.tion rate. As a result, the economic characters of spring maize were improved, and the yield was increased.
基金Supported by National Science and Technology Support Program(2007BAD38B09)~~
文摘Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irrigation technologies.Currently,there are few researches on this cooperative economic organization.In this study,connotations of cooperative economic organizations for water-saving irrigation are specifically defined,and the characteristics and functions of this cooperative economic organization are analyzed.Based on that,several suggestions are proposed on the continuous development of cooperative economic organizations for water-saving irrigation.
文摘Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature.
基金Supported by Key Technology R&D Program Project of Shijiazhuang City(141520208A)~~
文摘In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six greenhouses was calculated according to annual average precipitation 542.2 mm, up to 1 095.7 m^3. The upper natural slopes of cultivated land were as rainwater harvesting areas, and total annual rainwater harvesting amount was 49 242 m^3 on the mountain slopes with an area of 73.37 hm^2, while total water storage amount was 39 394 m^3 in theory, so it could meet water use for the irrigation of 26.28 hm^2 of T. sinensis land. To be convenient for rainwater harvesting, irrigation and supplying water to the water-saving cellars, one pert-cut and part-fill reservoir (which was 470 m^3 in volume) was built on the mountain slopes at the right rear of the greenhouses, and their altitude difference was 50 m. The reservoir was sealed and was built with reinforced concrete. Water-saving cellars were distributed in front and the middle and at the back of two rows of greenhouses, and they were connected with each other. The reservoir could supply water to the water-saving cellars and also collect water by mountain slopes, from the lower water-saving cellars or deep wells. Two rainwater hervesting ditches that were 1 650 m in length were at the lower edge of arable land in the upper reaches of slopes to intercept rainfall runoff and make it flow into channels and then the sedimentation tanks. The total annual rainwater harvesting amount of the reservoir and water-saving cellars was 1 222.5 m^3.
基金Supported by National863Green Super Rice Project"Water-saving and Drought-resistant Rice Germplasm Innovation"(2010AA101803)Anhui Province Foreign Expert Bureau Agricultural Introduction and Promotion Project"Demonstration and Extension of National Authorized Dry Rice Variety'Luhan No.1'"(Y20083400015)~~
文摘[Objective] This study aimed at exploring the utilization rate of water of the new water-saving rice variety "Luhan No.1" and providing references and basis for the further demonstration and extension.[Method] Water-saving rice variety "Luhan No.1" and original receptor "6527" were used for dry processing without aquifer,and rice under regular irrigation conditions was used as the control.[Result] Under conditions which had economized on 67.4% of water compared with the regular irrigation,decreasing rates of 1 000-seed weight,seed setting rate,plant height and effective panicles of "Luhan No.1" were relatively small and had not achieved a significant level,while the decreasing rates of production of the region,total grains per panicle,theoretical production and filled grains per panicle of the original receptor "6527" were all over 25% and had attained very significant levels(P0.01).[Conclusion] "Luhan No.1" had shown stable production,energy conservation,reducing environmental pollution and other advantages under water-conservating cultivation conditions.
基金funded by 948 Program of Ministry of Agriculture, China (2006-G52)
文摘Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.
文摘The Hexi Corridor is an important base of agriculture development inNorthwest China. According to recent statistics, there are 65. 94 x 10~8m^3 of water resourcesavailable in the Hexi Corridor. At present, net consumption in development and utilization is 43. 33x 10~8m^3. Water supply and demand reach a balance on the recent level of production, but loss ofevaporation and evapotranspiration is as much as 25. 69 x 1010~8m^3. So net use efficiency of waterresources is 59% Based on analyzing balance between water and land considering ecologicalenvironment at present, there exists the serious water shortage in the Shiyang River system whereirrigation lands have overloaded. There is a comparative balance between supply and demand of waterresource in the Heihe River system; and the Sule River system has some surplus water to extendirrigation land. Use of agriculture water accounts for 83. 3% and ecological forest and grass for 6.9% . The Hexi Corridor still has a great potential for water saving in agriculture production.Water-saving efficiency of irrigation is about 10% by using such traditional technologies as furrowand border-dike irrigation and small check irrigation, and water-saving with plastic film cover andtechniques of advanced sprinkler and drip/micro irrigation etc. can save more than 60% of irrigatedwater. Incremental irrigation area for water-saving potential in the Hexi Corridor has beenestimated as 56% - 197% to original irrigation area. So the second water sources can be developedfrom water saving agriculture in the Hexi Corridor under Development of the Western Part of China inlarge scale. This potential can be realized step by step through developing the water-savingmeasures, improving the ecological condition of oasis agriculture, and optimizing allocation ofwater resources in three river systems.
基金the National Key Research and Development Program of China(2017YFD0300203 and 2016YFD0300105)。
文摘The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.
文摘On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation.
文摘Water-saving and drought-resistance upland rice has become a preferable choice for cotton farmlands ready for changing crops or paddy fields with water in short,because simplified and mechanical cultivation can be applied for the rice varieties of drought resistance and high yield.At present,it has been applied with an area of 400 000 hm2 in Hunan Province and the area continues growing.The research bred and introduced the relevant cultivation technology standard applicable to local water-saving and drought-resistance rice varieties in order to improve farmer's benefits.
文摘Construction of "water-saving landscape architecture" is a crucial content of building "conservation-minded society'',an important approach of ensuring the sustainable development of landscaping industry.It targets at exploring a reasonable means of using the nature,so as to improve ecological conditions and environment,save resources and energies,and promote the harmonious coexistence of man and nature.Landscape plant is a significant component of landscape architecture,it is a key section to choose proper drought-resistant plant species for the landscape construction.
文摘The paper analyzed the important role of water saving in protecting the food safety,introduced the present development of agricultural water-saving technique,pointed out the potential risks of water resources,and proposed the future development of water-saving irrigation.
基金the Grant for Outstanding Hundred Scholars of Chinese Academy of Sciences.
文摘Land degradation and desertification have become severe environmental problems in arid areas due to excessive use of water resources. It is urgent to reduce agricultural water use for ecological rehabilitation, which may result in a decrease in agricultural production and farmer's welfare. This paper focused on the impacts of some main measures including extensions of watersaving irrigation, expanding solar green house and increasing off-farm employment, which are generally recognized to be important to alleviate water shortage and poverty. A bioconomic model is applied taking Minqin Oasis in Gansu Province as a case study site. Simulation results showed that the effect of expanding solar greenhouse was more positive than other ones so it drew more attention. On the view of the different effects between each irrigation zone, mixed policy patterns suitable for them are suggested. In Baqu, expanding solar greenhouse should be the most important, auxiliary with encouraging pipe irrigation. Inversely, with regard to Quanshan, the major attention should be paid to subsidy for pipe irrigation and it would be better to supply the off-farm employment opportunities to the households in Huqu, where the expanding of solar greenhouse should also be summoned. Finally, it should be noted that farmer's income would only resume to 90% of the current level in the short run by putting more effort into local policies. Thus, the ecological compensation is needed to ensure farmer's welfare.
基金Supported by 973 Project(2009CB421302)Innovation Project of Chinese Academy of Sciences(KZCX2-YW-127)Youth Science Foundation of China(41401025)
文摘The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%.
基金supported by the Key Project of Developing Agriculture through Science and Technology of Shanghai Municipal Agricultural Commission,China(Grant No.2010-1-1)Shanghai Science and Technology Development Funds,China(Grant No.11QA1405900)the National High-Tech Research and Development Program of China(Grant No.2012AA101102)
文摘To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR) variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS) mode and conventional tillage direct seeding (CTDS) mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0-5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5-20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.