期刊文献+
共找到7,227篇文章
< 1 2 250 >
每页显示 20 50 100
Lap-Shear Performance of Weld-Bonded Mg Alloy and Austenitic Stainless Steel in Three-Sheet Stack-Up
1
作者 Sunusi Marwana Manladan Mukhtar Fatihu Hamza +1 位作者 Singh Ramesh Zhen Luo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期342-353,共12页
With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable ... With the growing interest in utilizing Mg and austenitic stainless steel(ASS)in the automotive sector,joining them together in three-sheet configuration is inevitable.However,achieving this task presents considerable challenges due to the large differences in their physical,metallurgical and mechanical properties.To overcome these challenges,the feasibility of using weld-bonding to join Mg alloy/ASS/ASS was investigated.The nugget formation,interface characteristics,microstructure and mechanical properties of the joints were investigated.The results show that the connection between the Mg alloy and upper ASS was achieved through the combined effect of the cured adhesive and weld-brazing in the weld zone.On the other hand,a metallurgical bond was formed at the ASS/ASS interface.The Mg nugget microstructure exhibited fine columar grains composed predominantly of primaryα-Mg grains along with a eutectic mixture ofα-Mg andβ-Mg17Al12.The nugget formed at the ASS/ASS interface consisted largely of columnar grains of austenite,with some equiaxed dendritic grains formed at the centerline of the joint.The weld-bonded joints exhibited an average peak load and energy absorption of about 8.5 kN and 17 J,respectively(the conventional RSW joints failed with minimal or no load application).The failure mode of the joints changed with increasing welding current from interfacial failure via the Mg nugget/upper ASS interface to partial interfacial failure(part of the Mg nugget was pulled out of the Mg sheet).Both failure modes were accompanied by cohesive failure in the adhesive zone. 展开更多
关键词 Weld-bonding Resistance spot welding Austenitic stainless steel Mg alloy Failure mode
下载PDF
An Experimental Artificial Neural Network Model:Investigating and Predicting Effects of Quenching Process on Residual Stresses of AISI 1035 Steel Alloy
2
作者 Salman Khayoon Aldriasawi Nihayat Hussein Ameen +3 位作者 Kareem Idan Fadheel Ashham Muhammed Anead Hakeem Emad Mhabes Barhm Mohamad 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期78-92,共15页
The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array ... The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035. 展开更多
关键词 QUENCHING nanofluids residual stresses steel alloy artificial neural network MANOVA
下载PDF
Effect of heat treatment on microstructure and mechanical properties of Ti-containing low alloy martensitic wear-resistant steel 被引量:5
3
作者 Kai Lan Wang Ding Yi-tao Yang 《China Foundry》 SCIE CAS CSCD 2023年第4期329-338,共10页
Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector... Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively. 展开更多
关键词 low alloy wear-resistant steel quenching temperature cooling condition PRECIPITATE retained austenite wear resistance
下载PDF
Metal magnetic memory signals from surface of low-carbon steel and low-carbon alloyed steel 被引量:4
4
作者 董丽虹 徐滨士 +4 位作者 董世运 叶明慧 陈群志 王丹 尹大伟 《Journal of Central South University of Technology》 EI 2007年第1期24-27,共4页
In order to investigate the regularity of metal magnetic signals of ferromagnetic materials under the effect of applied load, the static tensile test of Q235 steel and 18CrNiWA steel plate specimens were conducted and... In order to investigate the regularity of metal magnetic signals of ferromagnetic materials under the effect of applied load, the static tensile test of Q235 steel and 18CrNiWA steel plate specimens were conducted and metal magnetic memory signals of specimens were measured during the test process. The influencing factors of metal magnetic memory signals and the relationship between axial applied load and signals were analyzed. The fracture and microstructure of the specimens were observed. The results show that the magnetic signals corresponding to the measured points change linearly approximately with increasing axial load. The microstructure of Q235 steel is ferrite and perlite, whereas that of 18CrNiWA steel is bainite and low-carbon martensite. The fracture of these two kinds of specimens is ductile rupture; carbon content of specimen materials and dislocation glide give much contribution to the characteristics of magnetic curves. 展开更多
关键词 metal magnetic memory low-carbon steel low-carbon alloyed steel applied load magnetic signals curve FRACTURE microstructure
下载PDF
Review on synergistic damage effect of irradiation and corrosion on reactor structural alloys 被引量:1
5
作者 Hui Liu Guan-Hong Lei He-Fei Huang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期109-141,共33页
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou... The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors. 展开更多
关键词 Irradiation and corrosion Synergistic effect Austenitic stainless steels Nickel-based alloys Reactors
下载PDF
Effect of acicular ferrite on banded structures in low-carbon microalloyed steel 被引量:2
6
作者 Lei Shi Ze-sheng Yan +3 位作者 Yong-chang Liu Xu Yang Cheng Zhang Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第12期1167-1174,共8页
The effect of acicular ferrite (AF) on banded structures in low-carbon microalloyed steel with Mn segregation during both iso- thermal transformation and continuous cooling processes was studied by dilatometry and m... The effect of acicular ferrite (AF) on banded structures in low-carbon microalloyed steel with Mn segregation during both iso- thermal transformation and continuous cooling processes was studied by dilatometry and microscopic observation. With respect to the iso- thermal transformation process, the specimen isothermed at 550℃ consisted of AF in Mn-poor bands and martensite in Mn-rich bands, whereas the specimen isothermed at 450℃ exhibited two different morphologies of AF that appeared as bands. At a continuous cooling rate in the range of 4 to 50℃/s, a mixture of AF and martensite formed in both segregated bands, and the volume fraction of martensite in Mn-rich bands was always higher than that in Mn-poor bands. An increased cooling rate resulted in a decrease in the difference of martensite volume fraction between Mn-rich and Mn-poor bands and thereby leaded to less distinct microstrucmral banding. The results show that Mn segregation and cooling rate strongly affect the formation of AF-containing banded structures. The formation mechanism of microstructural banding was also discussed. 展开更多
关键词 low-carbon microalloyed steel acicular ferrite MICROSTRUCTURE MANGANESE SEGREGATION
下载PDF
Investigation on influence of alloying on phase transitions of duplex stainless steel based on thermochemical calculation
7
作者 张志强 刘博 +3 位作者 徐连勇 韩永典 赵雷 曲思成 《China Welding》 CAS 2023年第4期11-28,共18页
This paper investigated on influence of different alloying elements added into duplex stainless steel (DSS) on phase transitions using thermochemical methods in comparison with experiment.The results showed that the m... This paper investigated on influence of different alloying elements added into duplex stainless steel (DSS) on phase transitions using thermochemical methods in comparison with experiment.The results showed that the most possible species in the ferrite phase,austenite phase,σphase,Hcp phase,χphase,and carbide were Cr:Va-type,Fe:Va-type,Ni:Cr:Mo-type,Cr_(2)N-type,Fe_(24)Mo_(10)Cr_(24)-type,and Cr:Mo:C-type,respectively.Furthermore,the Ni,N,Cr,and Mo alloying had significant influences on the transition of each DSS phase.The Ni and N additions obviously raised the temperature at ferrite-1/austenite-1 balance while the Cr and Mo decreased the dual-phase balance temperature.In addition,the Ni addition can promote the precipitating ofσphase at relatively high temperature while the precipitating of Hcp phase at relatively low temperature.The Hcp phase andχphase can be obviously increased by the N addition.The introduction of Cr and Mo notably enhances the precipitation ofσphase.However,the promotion ofχphase precipitation is facilitated by the presence of Mo,while the Cr element acts as an inhibitor forχphase precipitation.Furthermore,the ferrite/austenite ratio tested by experiment was higher than that calculated by thermochemical methods,thus pre-designed solution temperature should be lower about 30-100℃than that calculated by thermochemical methods. 展开更多
关键词 phase transitions PRECIPITATION alloyING THERMOCHEMISTRY duplex stainless steel
下载PDF
Prospects for green steelmaking technology with low carbon emissions in China
8
作者 Zhang Fucheng Hong Lukuo Xu Ying 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期1-24,共24页
The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel indu... The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology. 展开更多
关键词 carbon capture and utilization carbon emission hydrogen metallurgy low-carbon technology steel industry
下载PDF
Study on Key Joining Technology and Test Method of Steel/Al Hybrid Structure Body-in-White
9
作者 Lijun Han Fuyang Liu Changhua Liu 《Journal of Materials Science and Chemical Engineering》 2024年第4期104-118,共15页
Green and low carbon promote the application and development of light-weight materials in body-in-white. Large-scale die-casting Al alloy (DCAA) and high-strength thermo-formed steel sheet (TFSS) have put forward high... Green and low carbon promote the application and development of light-weight materials in body-in-white. Large-scale die-casting Al alloy (DCAA) and high-strength thermo-formed steel sheet (TFSS) have put forward higher requirements for the application of joining technology of high-strength steel/Al dissimilar materials. Taking the new die-casting Al alloy body as an example, this paper systematically studies the progress of the latest joining methods of steel/Al dissimilar material with combination of two-layer plate and three-layer plate. By analyzing the joining technologies such as FSPR, RES, FDS and SPR, the technology and process characteristics of steel/Al dissimilar material joining are studied, and the joining technical feasibility and realization means of different material combination of the body are analyzed. The conditions of material combination, material thickness, material strength, flange height, preformed holes and joint spacing for achieving high-quality joining are given. The FSPR joining technology is developed and tested in order to meet with the joining of parts with DCAA and TFSS, especially for the joining of three-layer plates with them. It finds the method and technical basis for the realization of high quality joining of dissimilar materials, provides the early conditions for the application of large DCAA and TFSS parts in body-in-white, and meets the design requirements of new energy body. . 展开更多
关键词 BODY-IN-WHITE LIGHTWEIGHT Die-Casting Al alloy Thermo-Formed steel Joining
下载PDF
Microstructure and high temperature tribological behavior of laser cladding Ni60A alloys coatings on 45 steel substrate 被引量:21
10
作者 张健 胡玉 +2 位作者 谭小军 郭亮 张庆茂 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1525-1532,共8页
The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically inves... The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically investigated. The high temperature friction and wear behavior of the cladding coating and substrate sliding against GCr15 ball under different loads was systematically evaluated. It was found that the coating has homogenous and fine microstructure consisting of γ(Ni) solid solution, a considerable amount of network Ni-Ni3 B eutectics, m^23C6 with the floret-shape structure and Cr B with the dark spot-shape structure uniformly distributing in interdendritic eutectics. The microhardness of the coating is about 2.6 times as much as that of the substrate. The coating produces higher friction values than the substrate under the same load condition, but the friction process on the coating keeps relatively stable. Wear rates of the coating are about 1/6.2 of that of the substrate under the higher load(300 g). Wear mechanism of the substrate includes adhesion wear, abrasive wear, severe plastic deformation and oxidation wear, while that of the coating is merely a combination of mild abrasive wear and moderate oxidation wear. 展开更多
关键词 laser cladding Ni60A alloy 45 steel MICROSTRUCTURE tribological behavior
下载PDF
Interfacial structure and mechanical properties of hot-roll bonded joints between titanium alloy and stainless steel using niobium interlayer 被引量:10
11
作者 赵东升 闫久春 +1 位作者 刘玉君 纪卓尚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2839-2844,共6页
The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plastici... The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer. 展开更多
关键词 hot roll bonding titanium alloy stainless steel NIOBIUM
下载PDF
Corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys in artificial seawater 被引量:14
12
作者 陈君 张清 +2 位作者 李全安 付三玲 王建章 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1022-1031,共10页
The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between... The corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys sliding against Al2O3 in artificial seawater using a pin-on-disk test rig were investigated. And the synergistic effect between corrosion and wear was emphatically evaluated. The results show that the open circuit potentials of both alloys drop down to more negative value due to friction. The corrosion current densities obtained under tribocorrosion condition are much higher than those under corrosion-only condition. Friction obviously accelerates the corrosion of the alloys. The wear loss for both alloys is larger in seawater than that in pure water. Wear loss is obviously accelerated by corrosion. And AISI 316 stainless steel is less resistant to sliding damage than Ti6Al4V alloy. The synergistic effect between wear and corrosion is a significant factor for the materials loss in tribocorrosion. In this surface-on-surface contact geometry friction system, the material loss is large but the ratio of wear-accelerated-corrosion to the total wear loss is very low. 展开更多
关键词 Ti6Al4V alloy AISI 316 stainless steel TRIBOCORROSION synergistic effect
下载PDF
Contact reactive brazing of Al alloy/Cu/stainless steel joints and dissolution behaviors of interlayer 被引量:10
13
作者 吴铭方 司乃潮 陈健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1035-1039,共5页
Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu int... Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu interlayer was analyzed. The results show that the product of reaction zone near 1Cr18Ni9Ti is composed of Fe2Al5, FeAl3 intermetallic compound (IMC), and Cu-Al IMC; the near by area is composed of Al-Cu eutectic structure with Al (Cu) solid solution. With increasing the brazing time, the thickness of IMC layer at the interface increases, while the width of Al-Cu eutectic structure with Al(Cu) solution decreases. Calculation shows the dissolution rate of Cu interlayer is very fast. The complete dissolution time is about 0.47 s for Cu interlayer with 10 μm in thickness used in this study. 展开更多
关键词 Al alloy stainless steel contact reactive brazing MICROSTRUCTURE dissolution of interlayer
下载PDF
Temperature and stress fields in electron beam welded Ti-15-3 alloy to 304 stainless steel joint with copper interlayer sheet 被引量:9
14
作者 张秉刚 王廷 +2 位作者 段潇辉 陈国庆 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期398-403,共6页
Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro... Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel. 展开更多
关键词 Ti-15-3 alloy 304 stainless steel electron beam welding temperature field residual stress
下载PDF
Microstructural characteristics of joint region during diffusion-brazing of magnesium alloy and stainless steel using pure copper interlayer 被引量:6
15
作者 袁新建 盛光敏 +1 位作者 罗军 李佳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期599-604,共6页
A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper... A novel joining method,double-stage diffusion-brazing of an AZ31 magnesium alloy and a 304L austenitic stainless steel,was carried out using a pure copper interlayer.The solid-state diffusion bonding of 304L to copper was conducted at 850 ℃ for 20 min followed by brazing to AZ31 at 520 ℃ and 495 ℃ for various time.Microstructural characteristics of the diffusion-brazed joints were investigated in detail.A defect free interface of Fe-Cu diffusion area appeared between the Cu alloy and the 304L steel.Cu-Mg reaction products were formed between AZ31 and Cu alloys.A layered structure including AZ31/Cu-Mg compounds/Cu/Fe-Cu diffusion layer/304L was present in the joint.With time prolonging,the reduction in the width of Cu layer was balanced by the increase in the width of Cu-Mg compounds zone.Microhardness peaks in the zone between AZ31 and Cu layer were attributed to the formation of Mg-Cu compounds in this zone. 展开更多
关键词 magnesium alloy stainless steel diffusion bonding BRAZING microstructural characteristics dissimilar metals welding
下载PDF
Microstructure and mechanical properties of friction welds between TiA l alloy and 40Cr steel rods 被引量:4
16
作者 董红刚 于连震 +3 位作者 高洪明 邓德伟 周文龙 董闯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3126-3133,共8页
Direct friction welding of Ti Al alloy to 40 Cr steel rods was conducted, and the microstructure and mechanical properties of the resultant joints in as-welded and post-weld heat treatment(PWHT) states were investig... Direct friction welding of Ti Al alloy to 40 Cr steel rods was conducted, and the microstructure and mechanical properties of the resultant joints in as-welded and post-weld heat treatment(PWHT) states were investigated. The martensitic transformation occurred and brittle Ti C phase formed near the interface due to C agglomeration, which degraded the joint strength and increased the microhardness at the interface in as-welded state. Feathery and Widmanstatten structure generated near the interface on Ti Al alloy side. After PWHT at 580 °C and 630 °C for 2 h, the sorbite formed and C dispersed at the interface, leading to the increase of the joint strength from 86 MPa in as-welded state to 395 MPa and 330 MPa, respectively. The heat-treated specimen fractured with quasi-cleavage features through the zone 1 mm away from the interface on TiA l alloy side, but the as-welded specimen failed through the interface. 展开更多
关键词 TiAl alloy steel dissimilar metal joining friction welding post-weld heat treatment
下载PDF
Structure and mechanical properties of aluminum alloy/Ag interlayer/steel non-centered electron beam welded joints 被引量:6
17
作者 张秉刚 陈国庆 +1 位作者 张春光 倪家强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2592-2596,共5页
Electron beam welding was carried out between aluminum alloy and steel with Ag interlayer. Seam morphology, structure and mechanical properties of the joints were investigated with different action positions of the el... Electron beam welding was carried out between aluminum alloy and steel with Ag interlayer. Seam morphology, structure and mechanical properties of the joints were investigated with different action positions of the electron beam spot. The results show that with the increment of the beam offset to the silver side from the interface between silver and steel, the seam morphology was improved, and the porosity in the Ag interlayer vanished. A transition layer mainly composed of Ag2Al and Al eutectic was formed at the interface between silver and aluminum, and became thin and spiccato as the beam offset increased. When the beam offset was too large, two IMC layers composed of FeAl and FeAl3 respectively were formed at the interface between steel and Ag interlayer. The optimal beam offset was 0.2 mm, and the maximum tensile strength of the joint was 193 MPa, 88.9% that of the aluminum alloy, and the fracture occurred at the interface between steel and Ag interlayer. 展开更多
关键词 aluminum alloy steel Ag interlayer non-centered electron beam welding joint
下载PDF
Electron beam welding of 304 stainless steel to QCr0.8 copper alloy with copper filler wire 被引量:5
18
作者 张秉刚 赵健 +1 位作者 李晓鹏 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期4059-4066,共8页
Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile ... Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa. 展开更多
关键词 304 stainless steel QCr0.8 copper alloy electron beam welding dissimilar joint mechanical properties
下载PDF
Effect of intermetallic compounds on heat resistance of hot roll bonded titanium alloy-stainless steel transition joint 被引量:4
19
作者 赵东升 闫久春 刘玉君 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1966-1970,共5页
The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels ... The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time. 展开更多
关键词 INTERMETALLICS titanium alloy stainless steel transition joint heat resistance heat treatment hot roll bonding
下载PDF
Welding of shape memory alloy to stainless steel for medical occluder 被引量:3
20
作者 吕世雄 杨仲林 董红刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期156-160,共5页
Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld... Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary. 展开更多
关键词 medical occluder NiTi alloy shape memory alloy stainless steel laser spot welding dissimilar metal joining Ni3Ti (Fe Ni)Ti
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部