This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the exper...This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.展开更多
The digital economy,as a new emerging economic form,has become an important power for realizing Chinese-style modernization and promoting green development in China.This paper measures the digital economy and low-carb...The digital economy,as a new emerging economic form,has become an important power for realizing Chinese-style modernization and promoting green development in China.This paper measures the digital economy and low-carbon transition index based on the data of 30 provinces in China from 2013 to 2020 and analyzes the mechanism and path of the digital economy affecting low-carbon transition using the fixed effect panel data model and the threshold effect model.It is found that,(1)The digital economy and low-carbon transition in China are various in different regions,with characteristics of being unbalanced and insufficient.(2)The digital economy significantly promotes low-carbon transition,with the greatest influence in the Central region,followed by the Eastern region and the Western region.Under different dimensions,the development of informatization and digital transactions promote low-carbon transition,but the development of the internet plays an inhibiting role.(3)The higher the degree of urbanization and environmental regulation,the greater the influence of the digital economy on low-carbon transition.展开更多
To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake grap...To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.展开更多
In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.Th...In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.The data collection for this paper includes data on deep processing of Chinese coal products from 2009 to 2020,as well as data on asset structure evolution and financial performance of 34 listed companies in the Chinese coal mining.Entropy value method is used to calculate the entropy value of low-carbon transformation,and the regression analysis is used to study the performance of cleaner transformation,the conclusion is as follows:(1)From 2009 to 2020,in China’s total energy consumption,coal consumption accounted for 71.6%in 2009 and 56.8%in 2020,the goals set by the state have been achieved.(2)The national goal of reducing the proportion of coal consumption and reducing carbon emissions has forced the transformation of deep processing of coal products.The transformation of coal enterprises towards low-carbon and clean production has achieved remarkable results.(3)From 2009 to 2020,the non coal industry income of 34 listed companies in China’s coal mining industry increased by 8.21%annually.At the same time,the asset structure was adjusted,and nearly 80%of the asset structure evolution showed an orderly development trend.(4)The regression analysis results show that the entropy value of coal deep processing products and the entropy value of asset structure adjustment are significantly related to transformation performance.The paper proposes to summarize the successful experience of China’s coal energy economic transformation,lay a foundation for achieving the carbon peak and carbon neutral goals in the future,further increase the intensity of coal deep processing,increase the proportion of clean energy in total energy consumption,and strive to control asset operation towards the goal of increasing the proportion of non coal industry income.展开更多
Given the global focus on green and low-carbon development and the increasing prominence of digital finance,it is particularly important to explore how to leverage digital finance to achieve these environmental goals....Given the global focus on green and low-carbon development and the increasing prominence of digital finance,it is particularly important to explore how to leverage digital finance to achieve these environmental goals.This study,through mechanism analysis,deeply examines how China’s digital finance promotes green and low-carbon development and elucidates the positive interaction between digital finance and the green industry.The study found that digital finance,through more flexible and efficient financial functions,alters the cost structure of carbon emissions,and reduces the risks and costs of green investments,thereby creating a cooperative green mechanism benefiting all parties,and guiding social groups toward a green and low-carbon transformation.Additionally,the rapid development of digital finance has strengthened the implementation of environmental protection policies,effectively promoted the expansion of the environmental protection industry,and established the green ethos as a mainstream concept in financial development.This study aims to provide reference perspectives and suggestions,assist policymakers in promoting the green and lowcarbon development of digital finance,and offer insights into the integrated development of digital finance and the green environmental protection industry.展开更多
Low-value,renewable,carbon-rich resources,with different biomass feedstocks and their derivatives as typical examples,represent virtually inexhaustive carbon sources and carbon-related energy on Earth.Upon conversion ...Low-value,renewable,carbon-rich resources,with different biomass feedstocks and their derivatives as typical examples,represent virtually inexhaustive carbon sources and carbon-related energy on Earth.Upon conversion to higher-value forms(referred to as“up-carbonization”here),these abundant feedstocks provide viable opportunities for energy-rich fuels and sustainable platform chemicals production.However,many of the current methods for such up-carbonization still lack sufficient energy,cost,and material efficiency,which affect their economics and carbon-emissions footprint.With external electricity precisely delivered,discharge plasmas enable many stubborn reactions to occur under mild conditions,by creating locally intensified and highly reactive environments.This technology emerges as a novel,versatile technology platform for integrated or stand-alone conversion of carbon-rich resources.The plasma-based processes are compatible for integration with increasingly abundant and cost-effective renewable electricity,making the whole conversion carbon-neutral and further paving the plasma-electrified upcarbonization to be performance-,environment-,and economics-viable.Despite the chief interest in this emerging area,no review article brings together the state-of-the-art results from diverse disciplines and underlies basic mechanisms and chemistry underpinned.As such,this review aims to fill this gap and provide basic guidelines for future research and transformation,by providing an overview of the application of plasma techniques for carbon-rich resource conversion,with particular focus on the perspective of discharge plasmas,the fundamentals of why plasmas are particularly suited for upcarbonization,and featured examples of plasma-enabled resource valorization.With parallels drawn and specificity highlighted,we also discuss the technique shortcomings,current challenges,and research needs for future work.展开更多
Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis wi...Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.展开更多
Climate change which is mainly caused by carbon emissions is a global problem affecting the economic development and well-being of human society.Low-carbon agriculture is of particular significance in slowing down glo...Climate change which is mainly caused by carbon emissions is a global problem affecting the economic development and well-being of human society.Low-carbon agriculture is of particular significance in slowing down global warming and reaching the goal of“carbon peak and carbon neutrality”.Therefore,taking straw incorporation as an example,this paper aims to investigate the impact of risk preferences on farmers’low-carbon agricultural technology(LCAT)adoption.Based on a two-phase micro-survey data of 1038 rice farmers in Jiangsu,Jiangxi,and Hunan provinces,this paper uses experimental economics methods to measure farmers’risk aversion and loss aversion to obtain the real risk preferences information of the farmers.We also explore the data to examine the actual LCAT adoption behavior of farmers.The results revealed that both risk aversion and loss aversion significantly inhibit farmers’LCAT adoption:more risk-averse or more loss-averse farmers are less likely to adopt LCAT.It is further found that crop insurance,farm scale and governmental regulations can alleviate the negative impact of risk aversion and loss aversion on farmers’LCAT adoption.Therefore,we propose that local governments need to promote low-carbon agricultural development by propagating the benefits of LCAT,extending crop insurance,promoting appropriate scale operations,and strengthening governmental regulations to promote farmers’LCAT adoption.展开更多
Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electri...Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases.展开更多
Electrocatalytic CO_(2)reduction reaction to low-carbon alcohol is a challenging task,especially high selectivity for ethanol,which is mainly limited by the regulation of reaction intermediates and subsequent C–C cou...Electrocatalytic CO_(2)reduction reaction to low-carbon alcohol is a challenging task,especially high selectivity for ethanol,which is mainly limited by the regulation of reaction intermediates and subsequent C–C coupling.A Cu-Co bimetallic catalyst with CN vacancies is successfully developed by H_(2)cold plasma toward a high-efficiency CO_(2)RR into low-carbon alcohol.The Cu-Co PBA-V_(CN)(Prussian blue analogues with CN vacancies)electrocatalyst yields methanol and ethanol as major products with a total low-carbon alcohol FE of 83.8%(methanol:39.2%,ethanol:44.6%)at-0.9 V vs.RHE,excellent durability(100 h)and a small onset potential of-0.21 V.ATR-SEIRAS(attenuated total internal reflection surface enhanced infrared absorption spectroscopy)and DFT(density functional theory)reveal that the steric hindrance of V_(CN)can enhance the CO generation from*COOH,and the C–C coupling can also be increased by CO spillover on uniformly dispersed Cu atoms.This work provides a strategy for the design and preparation of electrocatalysts for CO_(2)RR into low-carbon alcohol products and highlights the impact of catalyst steric hindrance to catalytic performance.展开更多
As a major solution to climate change,the low-carbon transition of energy systems has received growing attention in the past decade.This paper presents a bibliometric review of the literature on the low-carbon transit...As a major solution to climate change,the low-carbon transition of energy systems has received growing attention in the past decade.This paper presents a bibliometric review of the literature on the low-carbon transition of energy systems from an engineering management perspective.First,the definition and boundaries of the energy system transition are clarified,covering transformation of the energy structure,decarbonization of fossil fuel utilization,and improvement in energy efficiency.Second,a systematic search of the related literature and a bibliometric analysis are conducted to reveal the research trends.It is found that the number of related publications has been growing exponentially during the past decade,with researchers from China,the United Kingdom,the United States,Germany,and the Netherlands comprising the majority of authors.Related studies with interdisciplinary characteristics appear in journals focusing on energy engineering,environmental science,and social science related to energy issues.Four major research themes are identified by clustering the existing literature:(1)low-carbon transition pathways with different spatiotemporal scales and transition constraints;(2)low-carbon technology diffusion with a focus on renewable energy technologies,pollution control technologies,and other technologies facilitating the energy transition;(3)infrastructure network planning for energy systems covering various sectors and regions;and(4)transition-driving mechanisms from the political,economic,social,and natural perspectives.These four topics play distinct but mutually supportive roles in facilitating the low-carbon transition of energy systems,and require more in-depth research on designing resilient low-carbon transition pathways with coordinated goals,promoting low-carbon technologies with cost-effective and reliable infrastructure network deployment,and balancing multi-level risks in various systems.Finally,business models,nongovernment actors,energy justice,deep decarbonization,and zero-energy buildings are recognized as emerging hot topics.展开更多
This study establishes a low-carbon supply chain game model under the centralized decision situation and the decentralized decision situation considering the manufacturer risk-aversion behavior, and discusses the infl...This study establishes a low-carbon supply chain game model under the centralized decision situation and the decentralized decision situation considering the manufacturer risk-aversion behavior, and discusses the influence of the manufacturer risk-aversion behavior on the optimal decision, profit, coordination, and complex dynamics of the supply chain. We find that comparing with the risk-neutral decentralized decision, the increase of manufacturer's risk tolerance attitude can narrow the gap between the supply chain profit and the centralized decision, but it will further reduce the carbon emission reduction level. The increase of risk tolerance of the manufacturer and carbon tax will narrow the stable region of the system. Under this situation, the manufacturer should carefully adjust parameters to prevent the system from losing stability,especially the adjustment parameters for carbon emission reduction level. When the system is in a chaotic state, the increase of carbon tax rate makes the system show more complex dynamic characteristics. Under the chaotic state, it is difficult for the manufacturer to make correct price decision and carbon emission reduction strategy for the next period, which damages its profit, but increases the profit of the retailer and the supply chain. Finally, the carbon emission reduction cost-sharing contract is proposed to improve the carbon emission reduction level and the supply chain efficiency, achieving Pareto improvement. The stability region of the system is larger than that in the centralized decision situation, but the increase of the cost sharing coefficient will reduce the stability of the system in the decentralized decision-making situation.展开更多
The climate issue has become an environmental concern for all sectors of the world and the low-carbon economy has thus become a new economic development model to combat climate change.With the development of low-carbo...The climate issue has become an environmental concern for all sectors of the world and the low-carbon economy has thus become a new economic development model to combat climate change.With the development of low-carbon economy era,the textile and clothing industry plays an important role in stabilizing the development of low-carbon economy and society,and China has put forward the development requirements of low-carbon transformation for the textile and clothing industry,and also it has an important strategic value to promote the high-quality development of low-carbon economy and society,and the construction of brands’ core competitiveness is an inevitable choice for clothing brands in the face of the new form of international competition.As a result,the evaluation indicator of clothing brands’ core competitiveness in the low-carbon economy is used to measure the core competitiveness of clothing brands.Based on the corresponding verification results obtained by analytic hierarchy process(AHP) analysis,it can guide the low-carbon development of the clothing industry,thus proposing a more reasonable way to build the core competitiveness of clothing brands.It can promote the low-carbon transformation and upgrading of the clothing industry,effectively increase the market share of clothing brands,and promote the high-quality development of clothing brands.展开更多
Intuitionistic fuzzy numbers incorporate the membership and non-membership degrees.In contrast,Z-numbers consist of restriction components,with the existence of a reliability component describing the degree of certain...Intuitionistic fuzzy numbers incorporate the membership and non-membership degrees.In contrast,Z-numbers consist of restriction components,with the existence of a reliability component describing the degree of certainty for the restriction.The combination of intuitionistic fuzzy numbers and Z-numbers produce a new type of fuzzy numbers,namely intuitionistic Z-numbers(IZN).The strength of IZN is their capability of better handling the uncertainty compared to Zadeh's Z-numbers since both components of Z-numbers are charac-terized by the membership and non-membership functions,exhibiting the degree of the hesitancy of decision-makers.This paper presents the application of such numbers in fuzzy multi-criteria decision-making problems.A decision-making model is proposed using the trapezoidal intuitionistic fuzzy power ordered weighted average as the aggregation function and the ranking function to rank the alternatives.The proposed model is then implemented in a supplier selection problem.The obtained ranking is compared to the existing models based on Z-numbers.The results show that the ranking order is slightly different from the existing models.Sensitivity analysis is performed to validate the obtained ranking.The sensitivity analysis result shows that the best supplier is obtained using the proposed model with 80%to 100%consistency despite the drastic change of criteria weights.Intuitionistic Z-numbers play a very important role in describing the uncertainty in the decision makers’opinions in solving decision-making problems.展开更多
Minimalism has become a new consumer trend that can guide low-carbon innovation behaviors.This study uses two experiments and one survey to explore the mechanisms underlying the relationships among minimalism,quantita...Minimalism has become a new consumer trend that can guide low-carbon innovation behaviors.This study uses two experiments and one survey to explore the mechanisms underlying the relationships among minimalism,quantitative behavior,and low-carbon innovation behavior.The results show that(1)minimalism can positively influence consumers’low-carbon innovation behavior;(2)the interactive effect of minimalist and quantitative behavior on low-carbon innovation behavior is significant;and(3)meaning in life can play a significant mediating role in the relationship between minimalism and low-carbon innovation behavior.Finally,corresponding strategies for theory and management practices are proposed.展开更多
Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbo...Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system.展开更多
From the perspective of wellbeing performance of ecological input,this paper constructs a low-carbon competitiveness evaluation model with wellbeing performance of carbon emissions as the measurement standard,and uses...From the perspective of wellbeing performance of ecological input,this paper constructs a low-carbon competitiveness evaluation model with wellbeing performance of carbon emissions as the measurement standard,and uses the LMDI factor decomposition method to decompose the total effect of low-carbon competitiveness changes into technology effect and service effect.And then it conducts positive analysis and comparison of the low-carbon competitiveness and its effect contribution of G20 countries from1990 to 2018.The results are as follows:Firstly,in 2018,the UK,France,Argentina,Brazil,and Germany had higher low-carbon competitiveness.From 1990 to 2018,the low-carbon competitiveness of the UK,Turkey,Germany,Italy,and Brazil increase rapidly.Secondly,from 1990 to 2018,the total effect of low-carbon competitiveness of G20 member states was all positive,that is to say,the overall wellbeing performance of carbon emissions increased,technology effect and service effect are positive in 17 countries and negative in 2 countries respectively.Thirdly,China's low-carbon competitiveness is low,lacking static and dynamic advantages,although the technology effect is the highest,but the service effect is the lowest,resulting in a low total effect,which indicates that the wellbeing performance of economic growth is the main bottleneck of China's low-carbon development.Finally,the policy recommendations for China's future low-carbon transition and sustainable development are put forward.展开更多
文摘This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements.
基金supported by the Fund of Fujian Provincial Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era(Grant No.FJ2023XZB057)Major Project Fund of Fujian Provincial Social Science Research Base(Grant No.FJ2023JDZ021).
文摘The digital economy,as a new emerging economic form,has become an important power for realizing Chinese-style modernization and promoting green development in China.This paper measures the digital economy and low-carbon transition index based on the data of 30 provinces in China from 2013 to 2020 and analyzes the mechanism and path of the digital economy affecting low-carbon transition using the fixed effect panel data model and the threshold effect model.It is found that,(1)The digital economy and low-carbon transition in China are various in different regions,with characteristics of being unbalanced and insufficient.(2)The digital economy significantly promotes low-carbon transition,with the greatest influence in the Central region,followed by the Eastern region and the Western region.Under different dimensions,the development of informatization and digital transactions promote low-carbon transition,but the development of the internet plays an inhibiting role.(3)The higher the degree of urbanization and environmental regulation,the greater the influence of the digital economy on low-carbon transition.
文摘To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively.
基金fund major project“Research on China’s Natural Resources Capitalization and Corresponding Market Construction”(No.:15zdb163)Construction project of key disciplines of business administration in Jiangsu Province during the 14th five-year plan(SJYH2022-2/285).
文摘In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.The data collection for this paper includes data on deep processing of Chinese coal products from 2009 to 2020,as well as data on asset structure evolution and financial performance of 34 listed companies in the Chinese coal mining.Entropy value method is used to calculate the entropy value of low-carbon transformation,and the regression analysis is used to study the performance of cleaner transformation,the conclusion is as follows:(1)From 2009 to 2020,in China’s total energy consumption,coal consumption accounted for 71.6%in 2009 and 56.8%in 2020,the goals set by the state have been achieved.(2)The national goal of reducing the proportion of coal consumption and reducing carbon emissions has forced the transformation of deep processing of coal products.The transformation of coal enterprises towards low-carbon and clean production has achieved remarkable results.(3)From 2009 to 2020,the non coal industry income of 34 listed companies in China’s coal mining industry increased by 8.21%annually.At the same time,the asset structure was adjusted,and nearly 80%of the asset structure evolution showed an orderly development trend.(4)The regression analysis results show that the entropy value of coal deep processing products and the entropy value of asset structure adjustment are significantly related to transformation performance.The paper proposes to summarize the successful experience of China’s coal energy economic transformation,lay a foundation for achieving the carbon peak and carbon neutral goals in the future,further increase the intensity of coal deep processing,increase the proportion of clean energy in total energy consumption,and strive to control asset operation towards the goal of increasing the proportion of non coal industry income.
文摘Given the global focus on green and low-carbon development and the increasing prominence of digital finance,it is particularly important to explore how to leverage digital finance to achieve these environmental goals.This study,through mechanism analysis,deeply examines how China’s digital finance promotes green and low-carbon development and elucidates the positive interaction between digital finance and the green industry.The study found that digital finance,through more flexible and efficient financial functions,alters the cost structure of carbon emissions,and reduces the risks and costs of green investments,thereby creating a cooperative green mechanism benefiting all parties,and guiding social groups toward a green and low-carbon transformation.Additionally,the rapid development of digital finance has strengthened the implementation of environmental protection policies,effectively promoted the expansion of the environmental protection industry,and established the green ethos as a mainstream concept in financial development.This study aims to provide reference perspectives and suggestions,assist policymakers in promoting the green and lowcarbon development of digital finance,and offer insights into the integrated development of digital finance and the green environmental protection industry.
基金support from the National Key R&D Program of China(2020YFD0900900)Science and Technology Planning Project of Zhoushan of China(2022C41001)Zhejiang Ocean University(11135091221)。
文摘Low-value,renewable,carbon-rich resources,with different biomass feedstocks and their derivatives as typical examples,represent virtually inexhaustive carbon sources and carbon-related energy on Earth.Upon conversion to higher-value forms(referred to as“up-carbonization”here),these abundant feedstocks provide viable opportunities for energy-rich fuels and sustainable platform chemicals production.However,many of the current methods for such up-carbonization still lack sufficient energy,cost,and material efficiency,which affect their economics and carbon-emissions footprint.With external electricity precisely delivered,discharge plasmas enable many stubborn reactions to occur under mild conditions,by creating locally intensified and highly reactive environments.This technology emerges as a novel,versatile technology platform for integrated or stand-alone conversion of carbon-rich resources.The plasma-based processes are compatible for integration with increasingly abundant and cost-effective renewable electricity,making the whole conversion carbon-neutral and further paving the plasma-electrified upcarbonization to be performance-,environment-,and economics-viable.Despite the chief interest in this emerging area,no review article brings together the state-of-the-art results from diverse disciplines and underlies basic mechanisms and chemistry underpinned.As such,this review aims to fill this gap and provide basic guidelines for future research and transformation,by providing an overview of the application of plasma techniques for carbon-rich resource conversion,with particular focus on the perspective of discharge plasmas,the fundamentals of why plasmas are particularly suited for upcarbonization,and featured examples of plasma-enabled resource valorization.With parallels drawn and specificity highlighted,we also discuss the technique shortcomings,current challenges,and research needs for future work.
基金supported by the Science and Technology Major Project 2020 of Liaoning Province,China(2020JH1/10100008)National Natural Science Foundation of China(61991404 and 61991400)111 Project 2.0(B08015)。
文摘Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.
基金supported by the National Natural Science Foundation of China(72103115)the Humanities and Social Science Research General Project of the Ministry of Education of China(21XJC790008)+1 种基金the China Postdoctoral Science Foundation(2020T130393)the Social Science Foundation of Shaanxi Province,China(2021D028)。
文摘Climate change which is mainly caused by carbon emissions is a global problem affecting the economic development and well-being of human society.Low-carbon agriculture is of particular significance in slowing down global warming and reaching the goal of“carbon peak and carbon neutrality”.Therefore,taking straw incorporation as an example,this paper aims to investigate the impact of risk preferences on farmers’low-carbon agricultural technology(LCAT)adoption.Based on a two-phase micro-survey data of 1038 rice farmers in Jiangsu,Jiangxi,and Hunan provinces,this paper uses experimental economics methods to measure farmers’risk aversion and loss aversion to obtain the real risk preferences information of the farmers.We also explore the data to examine the actual LCAT adoption behavior of farmers.The results revealed that both risk aversion and loss aversion significantly inhibit farmers’LCAT adoption:more risk-averse or more loss-averse farmers are less likely to adopt LCAT.It is further found that crop insurance,farm scale and governmental regulations can alleviate the negative impact of risk aversion and loss aversion on farmers’LCAT adoption.Therefore,we propose that local governments need to promote low-carbon agricultural development by propagating the benefits of LCAT,extending crop insurance,promoting appropriate scale operations,and strengthening governmental regulations to promote farmers’LCAT adoption.
基金National Natural Science Foundation of China,Grant/Award Number:51677059。
文摘Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases.
基金the National Natural Science Foundation of China(21902017)the Project of Fundamental Research and Frontier Exploration of Chongqing(cstc2019jcyj-msxmX0052)+5 种基金the Foundation of Technological Innovation and Application Development of Chongqing(cstc2021jscx-msxmX0308)the Key Projects of Technology Innovation and Application Development of Chongqing(cstc2019jscx-gksbX0022)the Banan Science and Technology Foundation of Chongqing(2018TJ03,2020QC374)the Major Project of Science and Technology Research Program of Chongqing Education Commission of China(KJZD-M202101101)the Youth Project of Science and Technology Research Program of Chongqing Education Commission of China(KJQN20211107)the Scientific Research Foundation of Chongqing University of Technology(2020ZDZ022)。
文摘Electrocatalytic CO_(2)reduction reaction to low-carbon alcohol is a challenging task,especially high selectivity for ethanol,which is mainly limited by the regulation of reaction intermediates and subsequent C–C coupling.A Cu-Co bimetallic catalyst with CN vacancies is successfully developed by H_(2)cold plasma toward a high-efficiency CO_(2)RR into low-carbon alcohol.The Cu-Co PBA-V_(CN)(Prussian blue analogues with CN vacancies)electrocatalyst yields methanol and ethanol as major products with a total low-carbon alcohol FE of 83.8%(methanol:39.2%,ethanol:44.6%)at-0.9 V vs.RHE,excellent durability(100 h)and a small onset potential of-0.21 V.ATR-SEIRAS(attenuated total internal reflection surface enhanced infrared absorption spectroscopy)and DFT(density functional theory)reveal that the steric hindrance of V_(CN)can enhance the CO generation from*COOH,and the C–C coupling can also be increased by CO spillover on uniformly dispersed Cu atoms.This work provides a strategy for the design and preparation of electrocatalysts for CO_(2)RR into low-carbon alcohol products and highlights the impact of catalyst steric hindrance to catalytic performance.
基金the financial support provided by the National Natural Science Foundation of China(71934007 and 72004228)。
文摘As a major solution to climate change,the low-carbon transition of energy systems has received growing attention in the past decade.This paper presents a bibliometric review of the literature on the low-carbon transition of energy systems from an engineering management perspective.First,the definition and boundaries of the energy system transition are clarified,covering transformation of the energy structure,decarbonization of fossil fuel utilization,and improvement in energy efficiency.Second,a systematic search of the related literature and a bibliometric analysis are conducted to reveal the research trends.It is found that the number of related publications has been growing exponentially during the past decade,with researchers from China,the United Kingdom,the United States,Germany,and the Netherlands comprising the majority of authors.Related studies with interdisciplinary characteristics appear in journals focusing on energy engineering,environmental science,and social science related to energy issues.Four major research themes are identified by clustering the existing literature:(1)low-carbon transition pathways with different spatiotemporal scales and transition constraints;(2)low-carbon technology diffusion with a focus on renewable energy technologies,pollution control technologies,and other technologies facilitating the energy transition;(3)infrastructure network planning for energy systems covering various sectors and regions;and(4)transition-driving mechanisms from the political,economic,social,and natural perspectives.These four topics play distinct but mutually supportive roles in facilitating the low-carbon transition of energy systems,and require more in-depth research on designing resilient low-carbon transition pathways with coordinated goals,promoting low-carbon technologies with cost-effective and reliable infrastructure network deployment,and balancing multi-level risks in various systems.Finally,business models,nongovernment actors,energy justice,deep decarbonization,and zero-energy buildings are recognized as emerging hot topics.
基金Project supported by the Social Science Planning Project of Chongqing, China (Grant No. 2022BS069)the Science and Technology Research Project of Chongqing Education Committee, China (Grant No. KJQN202201140)+1 种基金the National Social Science Foundation of China (Grant No. 20&ZD155)the National Natural Science Foundation of China (Grant No. 72061003)。
文摘This study establishes a low-carbon supply chain game model under the centralized decision situation and the decentralized decision situation considering the manufacturer risk-aversion behavior, and discusses the influence of the manufacturer risk-aversion behavior on the optimal decision, profit, coordination, and complex dynamics of the supply chain. We find that comparing with the risk-neutral decentralized decision, the increase of manufacturer's risk tolerance attitude can narrow the gap between the supply chain profit and the centralized decision, but it will further reduce the carbon emission reduction level. The increase of risk tolerance of the manufacturer and carbon tax will narrow the stable region of the system. Under this situation, the manufacturer should carefully adjust parameters to prevent the system from losing stability,especially the adjustment parameters for carbon emission reduction level. When the system is in a chaotic state, the increase of carbon tax rate makes the system show more complex dynamic characteristics. Under the chaotic state, it is difficult for the manufacturer to make correct price decision and carbon emission reduction strategy for the next period, which damages its profit, but increases the profit of the retailer and the supply chain. Finally, the carbon emission reduction cost-sharing contract is proposed to improve the carbon emission reduction level and the supply chain efficiency, achieving Pareto improvement. The stability region of the system is larger than that in the centralized decision situation, but the increase of the cost sharing coefficient will reduce the stability of the system in the decentralized decision-making situation.
文摘The climate issue has become an environmental concern for all sectors of the world and the low-carbon economy has thus become a new economic development model to combat climate change.With the development of low-carbon economy era,the textile and clothing industry plays an important role in stabilizing the development of low-carbon economy and society,and China has put forward the development requirements of low-carbon transformation for the textile and clothing industry,and also it has an important strategic value to promote the high-quality development of low-carbon economy and society,and the construction of brands’ core competitiveness is an inevitable choice for clothing brands in the face of the new form of international competition.As a result,the evaluation indicator of clothing brands’ core competitiveness in the low-carbon economy is used to measure the core competitiveness of clothing brands.Based on the corresponding verification results obtained by analytic hierarchy process(AHP) analysis,it can guide the low-carbon development of the clothing industry,thus proposing a more reasonable way to build the core competitiveness of clothing brands.It can promote the low-carbon transformation and upgrading of the clothing industry,effectively increase the market share of clothing brands,and promote the high-quality development of clothing brands.
基金funded by the Fundamental Research Grant Scheme under the Ministry of Higher Education Malaysia FRGS/1/2019/STG06/UMP/02/9.
文摘Intuitionistic fuzzy numbers incorporate the membership and non-membership degrees.In contrast,Z-numbers consist of restriction components,with the existence of a reliability component describing the degree of certainty for the restriction.The combination of intuitionistic fuzzy numbers and Z-numbers produce a new type of fuzzy numbers,namely intuitionistic Z-numbers(IZN).The strength of IZN is their capability of better handling the uncertainty compared to Zadeh's Z-numbers since both components of Z-numbers are charac-terized by the membership and non-membership functions,exhibiting the degree of the hesitancy of decision-makers.This paper presents the application of such numbers in fuzzy multi-criteria decision-making problems.A decision-making model is proposed using the trapezoidal intuitionistic fuzzy power ordered weighted average as the aggregation function and the ranking function to rank the alternatives.The proposed model is then implemented in a supplier selection problem.The obtained ranking is compared to the existing models based on Z-numbers.The results show that the ranking order is slightly different from the existing models.Sensitivity analysis is performed to validate the obtained ranking.The sensitivity analysis result shows that the best supplier is obtained using the proposed model with 80%to 100%consistency despite the drastic change of criteria weights.Intuitionistic Z-numbers play a very important role in describing the uncertainty in the decision makers’opinions in solving decision-making problems.
基金This research was supported by Zhejiang Provincial Social Science Foundation of China[Grant number.22LLXC017YB]。
文摘Minimalism has become a new consumer trend that can guide low-carbon innovation behaviors.This study uses two experiments and one survey to explore the mechanisms underlying the relationships among minimalism,quantitative behavior,and low-carbon innovation behavior.The results show that(1)minimalism can positively influence consumers’low-carbon innovation behavior;(2)the interactive effect of minimalist and quantitative behavior on low-carbon innovation behavior is significant;and(3)meaning in life can play a significant mediating role in the relationship between minimalism and low-carbon innovation behavior.Finally,corresponding strategies for theory and management practices are proposed.
基金supported by the State Grid Shandong Electric Power Company Economic and Technical Research Institute Project(SGSDJY00GPJS2100135).
文摘Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system.
文摘From the perspective of wellbeing performance of ecological input,this paper constructs a low-carbon competitiveness evaluation model with wellbeing performance of carbon emissions as the measurement standard,and uses the LMDI factor decomposition method to decompose the total effect of low-carbon competitiveness changes into technology effect and service effect.And then it conducts positive analysis and comparison of the low-carbon competitiveness and its effect contribution of G20 countries from1990 to 2018.The results are as follows:Firstly,in 2018,the UK,France,Argentina,Brazil,and Germany had higher low-carbon competitiveness.From 1990 to 2018,the low-carbon competitiveness of the UK,Turkey,Germany,Italy,and Brazil increase rapidly.Secondly,from 1990 to 2018,the total effect of low-carbon competitiveness of G20 member states was all positive,that is to say,the overall wellbeing performance of carbon emissions increased,technology effect and service effect are positive in 17 countries and negative in 2 countries respectively.Thirdly,China's low-carbon competitiveness is low,lacking static and dynamic advantages,although the technology effect is the highest,but the service effect is the lowest,resulting in a low total effect,which indicates that the wellbeing performance of economic growth is the main bottleneck of China's low-carbon development.Finally,the policy recommendations for China's future low-carbon transition and sustainable development are put forward.