A new photovoltaic-thermochemical(PVTC) conceptual system integrating photon-enhanced thermionic emission(PETE) and methane steam reforming is proposed. Major novelty of the system lies in its potential adaptivity to ...A new photovoltaic-thermochemical(PVTC) conceptual system integrating photon-enhanced thermionic emission(PETE) and methane steam reforming is proposed. Major novelty of the system lies in its potential adaptivity to primary fuels(e.g. methane) and high efficiencies of photovoltaic and thermochemical power generation, both of which result from its operation at much elevated temperatures(700–1000 °C)compared with conventional photovoltaic-thermal(PVT) systems. Analysis shows that an overall power generation efficiency of 45.3% and a net solar-to-electric efficiency of 39.1% could be reached at an operating temperature of 750 °C, after considering major losses during solar energy capture and conversion processes. The system is also featured by high solar share(37%) in the total power output, as well as high energy storage capability and very low CO_2 emissions, both enabled by the integration of methane reforming with photovoltaic generation at high temperatures.展开更多
基金supported by the National Key Research and Development Program of China (2016YFB0901401)the National Natural Science Foundation of China (51676189)the Chinese Academy of Sciences Frontier Science Key Research Project (QYZDY-SSW-JSC036)
文摘A new photovoltaic-thermochemical(PVTC) conceptual system integrating photon-enhanced thermionic emission(PETE) and methane steam reforming is proposed. Major novelty of the system lies in its potential adaptivity to primary fuels(e.g. methane) and high efficiencies of photovoltaic and thermochemical power generation, both of which result from its operation at much elevated temperatures(700–1000 °C)compared with conventional photovoltaic-thermal(PVT) systems. Analysis shows that an overall power generation efficiency of 45.3% and a net solar-to-electric efficiency of 39.1% could be reached at an operating temperature of 750 °C, after considering major losses during solar energy capture and conversion processes. The system is also featured by high solar share(37%) in the total power output, as well as high energy storage capability and very low CO_2 emissions, both enabled by the integration of methane reforming with photovoltaic generation at high temperatures.