Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholestero...Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholesterol-containing apolipoproteins to maintain lipid homeostasis.However,little is known about the role of LRP2 in lipid homeostasis in insects.In the present study,we investigated the function of LRP2 in the migratory locust Locusta migratoria(LmLRP2).The mRNA of LmLRP2 is widely distributed in various tissues,including integument,wing pads,foregut,midgut,hindgut,Malpighian tubules and fat body,and the amounts of LmLRP2 transcripts decreased gradually in the early stages and then increased in the late stages before ecdysis during the nymphal developmental stage.Fluorescence immunohistochemistry revealed that the LmLRP2 protein is mainly located in cellular membranes of the midgut and hindgut.Using RNAi to silence LmLRP2 caused molting defects in nymphs(more than 60%),and the neutral lipid was found to accumulate in the midgut and surface of the integument,but not in the fat body,of dsLmLRP2-treated nymphs.The results of a lipidomics analysis showed that the main components of lipids(diglyceride and triglyceride)were significantly increased in the midgut,but decreased in the fat body and hemolymph.Furthermore,the content of total triglyceride was significantly increased in the midgut,but markedly decreased in the fat body and hemolymph in dsLmLRP2-injected nymphs.Our results indicate that LmLRP2 is located in the cellular membranes of midgut cells,and is required for lipid export from the midgut to the hemolymphand fat body in locusts.展开更多
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit...Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.展开更多
BACKGROUND Advanced glycation end products(AGEs)are diabetic metabolic toxic products that cannot be ignored.Nε-(carboxymethyl)lysine(CML),a component of AGEs,could increase macrophage lipid uptake,promote foam cell ...BACKGROUND Advanced glycation end products(AGEs)are diabetic metabolic toxic products that cannot be ignored.Nε-(carboxymethyl)lysine(CML),a component of AGEs,could increase macrophage lipid uptake,promote foam cell formation,and thereby accelerate atherosclerosis.The receptor for AGEs(RAGE)and cluster of differentiation 36(CD36)were the receptors of CML.However,it is still unknown whether RAGE and CD36 play key roles in CML-promoted lipid uptake.AIM Our study aimed to explore the role of RAGE and CD36 in CML-induced macrophage lipid uptake.METHODS In this study,we examined the effect of CML on lipid uptake by Raw264.7 macrophages.After adding 10 mmol/L CML,the lipid accumulation in macrophages was confirmed by oil red O staining.Expression changes of CD36 and RAGE were detected with immunoblotting and quantitative real-time polymerase chain reaction.The interaction between CML with CD36 and RAGE was verified by immunoprecipitation.We synthesized a novel N-succinimidyl-4-18Ffluorobenzoate-CML radioactive probe.Radioactive receptor-ligand binding assays were performed to test the binding affinity between CML with CD36 and RAGE.The effects of blocking CD36 or RAGE on CML-promoting lipid uptake were also detected.RESULTS The study revealed that CML significantly promoted lipid uptake by macrophages.Immunoprecipitation and radioactive receptor-ligand binding assays indicated that CML could specifically bind to both CD36 and RAGE.CML had a higher affinity for CD36 than RAGE.ARG82,ASN71,and THR70 were the potential interacting amino acids that CD36 binds to CML Anti-CD36 and anti-RAGE could block the uptake of CML by macrophages.The lipid uptake promotion effect of CML was significantly attenuated after blocking CD36 or RAGE.CONCLUSION Our results suggest that the binding of CML with CD36 and RAGE promotes macrophage lipid uptake.展开更多
17β-estradiol modulates the activity of D2 receptors in the regulation of food intake and body weight. The functional lack of 17β-estradiol in postmenopausal women could create a dietary imbalance and cause body wei...17β-estradiol modulates the activity of D2 receptors in the regulation of food intake and body weight. The functional lack of 17β-estradiol in postmenopausal women could create a dietary imbalance and cause body weight gain. This study aimed to better understand the interferences that could exist between 17β-estradiol, D2 receptors and the selection of carbohydrate, fat and protein consumption, as well as their consequences on body weight gain by using an animal model of the menopause. Ovariectomy exacerbates the consumption of foods rich in lipids. Thus confirming an inhibitory action of 17β-estradiol (E2) on the consumption of these types of foods. This consumption stimulates body weight gain, which is promoted by the high caloric content of these foods and not by the amount consumed. Our results showed a direct involvement of D2 receptors in food choice. This choice would be made according to the two (2) isoforms of the D2 receptors. The D2/BR isoform directs towards a high carbohydrate consumption, without causing a gain in body weight. While D2/SUL, promotes high fat food consumption, causing an increase in body weight. In women, 17β-estradiol modulates the activity ratio between these two D2 receptor isoforms to ensure energy and homeostatic balance, stabilizing food intake and body weight.展开更多
Oxidized low-density lipoprotein receptor 1(OLR1)is upregulated in neurons and participates in hypertension-induced neuronal apoptosis.OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive...Oxidized low-density lipoprotein receptor 1(OLR1)is upregulated in neurons and participates in hypertension-induced neuronal apoptosis.OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive-induced stroke.Therefore,OLR1 is likely involved in the progress of intracerebral hemorrhage.In this study,we examined the potential role of OLR1 in intracerebral hemorrhage using a rat model.OLR1 small interfering RNA(10μL;50 pmol/μL)was injected into the right basal ganglia to knock down OLR1.Twenty-four hours later,0.5 U collagenase type VII was injected to induce intracerebral hemorrhage.We found that knockdown of OLR1 attenuated neurological behavior impairment in rats with intracerebral hemorrhage and reduced hematoma,neuron loss,inflammatory reaction,and oxidative stress in rat brain tissue.We also found that silencing of OLR1 suppressed ferroptosis induced by intracerebral hemorrhage and the p38 signaling pathway.Therefore,silencing OLR1 exhibits protective effects against secondary injury of intracerebral hemorrhage.These findings suggest that OLR1 may be a novel potential therapeutic target for intracerebral hemorrhage.展开更多
Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical...Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical Research investigated the role of retinoic acid receptor responder 2(RARRES2)in regulating lipid metabolism in BCBrM,highlighting the clinical relevance of alterations in lipid metabolites,such as phosphatidylcholine(PC)and triacylglycerols(TAGs),by RARRES2 through the modulation of phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway.This commentary aims to elaborate on the key findings and their relevance to the field.展开更多
Objective To explore the association of single nucleotide polymorphisms(SNPs)of the vitamin D receptor gene(VDR)with circulating lipids considering gender differences.Methods Of the Han Chinese adults recruited from a...Objective To explore the association of single nucleotide polymorphisms(SNPs)of the vitamin D receptor gene(VDR)with circulating lipids considering gender differences.Methods Of the Han Chinese adults recruited from a health examination center for inclusion in the study,the circulating lipids,25-hydroxyvitamin D(25OHD),and other parameters were measured.The VDR SNPs of Cdx2(rs11568820),Fok1(rs2228570),Apa1(rs7975232),and Taq1(rs731236)were genotyped with a qPCR test using blood DNA samples,and their associations with lipids were analyzed using logistic regression.Results In the female participants(n=236 with dyslipidemia and 888 without dyslipidemia),multiple genotype models of Fok1 indicated a positive correlation of B(not A)alleles with LDLC level(P<0.05).In the male participants(n=299 with dyslipidemia and 564 without dyslipidemia),the recessive model of Cdx2 and the additive and recessive models of Fok1 differed(P<0.05)between the HDLC-classified subgroups,respectively,and Fok1 BB and Cdx2 TT presented interactions with 25OHD in the negative associations with HDLC(P<0.05).Conclusion In the Chinese Han adults included in the study,the Fok1 B-allele of VDR was associated with higher LDLC in females,and the Fok1 B-allele and the Cdx2 T-allele of VDR were associated with lower HDLC in males.The interaction of VD and Fok1 BB or Cdx2 TT in males synergistically decreased HDLC levels.展开更多
BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous stud...BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism.AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance.METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC.The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells.We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells.Finally,we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells.RESULTS Compared to normal mucosa,REG4 mRNA expression was high in CRC(P<0.05)but protein expression was low.An inverse correlation existed between lymph node and distant metastases,tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression(P<0.05),but vice versa for REG4 protein expression.REG4-related genes included:Chemokine activity;taste receptors;protein-DNA and DNA packing complexes;nucleosomes and chromatin;generation of second messenger molecules;programmed cell death signals;epigenetic regulation and DNA methylation;transcription repression and activation by DNA binding;insulin signaling pathway;sugar metabolism and transfer;and neurotransmitter receptors(P<0.05).REG4 exposure or overexpression promoted proliferation,antiapoptosis,migration,and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway.REG4 was involved in chemoresistance not through de novo lipogenesis,but lipid droplet assembly.REG4 inhibited the transcription of acetyl-CoA carboxylase 1(ACC1)and ATP-citrate lyase(ACLY)by disassociating the complex formation of anti-acetyl(AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY.CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly.REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.展开更多
NMDA receptor channels play a significant role in learning and memory and their dysfunction can cause neuronal cell death leading to dementia. Research had shown that lipids change the risk for dementia, especially so...NMDA receptor channels play a significant role in learning and memory and their dysfunction can cause neuronal cell death leading to dementia. Research had shown that lipids change the risk for dementia, especially some omega-3 lipids appear to lower Alz-heimer’s risk, yet only limited research exists on the modulation of NMDA receptor channels by lipids. Here we review recent literature concerning molecular determinants that influence the NMDA receptor channel gating via membrane lipids and fatty acids with profound significance for understanding how altered NMDA signalling leads to neuronal cell death linked to age-related dementia’s. Future discovery of lipid-like modulators of NMDA receptor function offer the potential for the development of new bioceu-ticals and affordable nutritional supplements to combat neuronal degeneration as well as to promote well being and healthy aging.展开更多
Objectives Bai Ku Yao(White-trousers Yaos)is a special branch of Yao minority in China.They are now living in both Lihu and Baxu villages,Nandan County, Guangxi,China.The population size is about 30,000.The special cu...Objectives Bai Ku Yao(White-trousers Yaos)is a special branch of Yao minority in China.They are now living in both Lihu and Baxu villages,Nandan County, Guangxi,China.The population size is about 30,000.The special customs and culture of Bai Ku Yao,including their special clothing,intra-ethnic marriages and alcohol intake are still completely conserved to the present day.In previous epidemiologic studies,we found that the serum lipid levels and the prevalence of hyperlipidaemia were lower in Bai Ku Yao than in Han Chinese from the same region.This ethnic difference in serum lipid profiles is still not well known.We hypothesized that there may be significant differences in some genetic polymorphismsssociation of low density lipoprotein receptor (LDL-R) genepolymorphism and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations.Methods A total of 1024 subjects of Bai Ku Yao and 792 participants of Han Chinese were stud- ied by a stratified randomized cluster sampling.Epidemiological survey was carried out using internationally standardized methods.Information on demographics,socioeconomic status, and lifestyle factors was collected with standardized questionnaires. The height,weight,waist circumference,blood pressure, and serum total cholesterol(TC),triglyceride(TG), high-density lipoprotein cholesterol(HDL-C),low-density lipoprotein cholesterol(LDL-C),apolipoprotein(Apo) A1, and ApoB were measured.Body massindex(BMI,kg/m2) was calculated.Genotyping of the LDL-RAvaⅡwas performed by polymerse chain reaction and restriction fragment length polymorphism combined with gel electrophoresis,and then confirmed by direct sequencing.Results(l)The height,weight,serum TC,HDL-C,LDL-C,ApoAl levels and the ratio of ApoAl to ApoB were lower in Bai Ku Yao than in Han Chinese(P【0.01 for all),whereas the percentage of subjects who consumed alcohol or smoked cigarettes was higher in Bai Ku Yao than in Han Chinese(P【0.01 for each).(2) The frequency of A+ allele in Bai Ku Yao was 34.5%,and the frequencies of A-A-,A-A+ and A+A + genotypes were 42.6%,45.9%and 11.5%;respectively. The frequency of A+ allele in Han Chinese was 19.3%(P【0.001),and the frequencies of A-A-,A-A + and A+A+ genotypes were 64.9%,31.6%and 3.5%(P【0.001);respectively. The frequencies of A-A-,A-A+ and A+A+ genotypes in Bai Ku Yao were significant difference between males and females,between normal TC and high TC subgroup, and between normal LDL-C and high LDL-C subgroup (P【0.05 for all),whereas the frequencies of A- and A+ ? alleles in Han Chinese were significant difference between males and females(P【0.05).(3) Serum LDL-C levels in Bai Ku Yao were significant difference among the A-A-, A-A+ and A+A+ genotypes(P【0.05),the A+ carriers had higher serum LDL-C levels.Serum HDL-C levels in Han Chiese were significant difference among the A-A-,A-A + and A+A+ genotypes(P【0.01),the A+ carriers had higher serum HDL-C levels.(4) After adjusting other factors,the prevalence of LDL-C abnormality was still higher in Han Chiese than in Bai Ku Yao.The prevalence of TC abnormality in Han Chinese was almost twice high as in Bai Ku Yao. The age and diet were common risk factor for TC abnormality. No effect of AvaⅡgenotype or alcohol consumption on the TC abnormality was found,but the combination of geno-type and alcohol consumption can increase the prevalence of TC abnormality[Exp(B) =(1.154)].Age was negatively cor- related with TG level.Conclusions Serum TC and LDL-C levels were lower in Bai Ku Yao than in Han Chinese.There were significant differences in the AvaⅡallele and genotype frequencies between the he A+ carriers in Bai Ku Yao had higher serum LDL-C levels,whereas the A+ carriers in Han had higher serum HDL-C levels.Interactions between alcohol consumption or cigarette smoking and the LDL-R AvaⅡgenotype were also observed.The differences in the serum lipid profiles between the two ethnic groups might partly result from different genotypic frequency of LDL-R AvaⅡpolymorphism or differentgene-enviromental interactions.Bai Ku Yao and Han population,the frequency of A + allele was higher in Bai Ku Yao than in Han.T between the two ethnic groups.Therefore,the aim of the present study was to detect the展开更多
Objectives The association of peroxisome prolif-erator -activated receptor delta(PPARD) +294T】C polymorphism and serum lipid levels is inconsistent in several previous studies.Bai Ku Yao is an isolated association of...Objectives The association of peroxisome prolif-erator -activated receptor delta(PPARD) +294T】C polymorphism and serum lipid levels is inconsistent in several previous studies.Bai Ku Yao is an isolated association of PPARD +294T】C(rs2016520) polymorphism and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations.Methods A total of 609 subjects of Bai Ku Yao and 573 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples.Genotyping of the PPARD +294T】C polymorphism was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing.Results The levels of serum total cholesterol(TC),high-density lipoprotein cholesterol(HDL-C),apolipoprotein(Apo) AI and ApoB were lower in Bai Ku Yao than in Han(P【0.001 for all).The frequency of T and C alleles was 77.50%and 22.50%in Bai Ku Yao,and 72.43%and 27.57%in Han (P【0.01);respectively.The frequency of TT,TC and CC genotypes was 60.59%,33.83%and 5.53%in Bai Ku Yao, and 52.18%,40.50%and 7.32%in Han(P【0.05);respectively. The levels of LDL-C,ApoB and the ratio of ApoAI to ApoB in Bai Ku Yao were different among the three genotypes in females but not in males(P【0.05 for all).The subjects with TT and TC genotypes had lower serum LDL-C and ApoB levels and higher the ratio of ApoAI to ApoB than the CC genotype in females.The levels of TC and ApoB in the total Han population were different among the three genotypes (P【0.05 for all).The C allele carriers had higher serum TC and ApoB levels than the C allele noncarriers.When serum lipid levels were analyzed according to sex,the difference in serum TC levels in Han was significant in males(P【0.01) but not in females,whereas the difference in serum ApoB levels was significant in females(P【0.05)but not in males. Serum TC and ApoB levels were correlated with genotypes in Han(P【0.05 for each) but not in Bai Ku Yao.Serum lipid parameters were also correlated with sex,age,body massindex, alcohol consumption,cigarette smoking,and blood pressure in both ethnic groups.Conclusions These results suggest that the association of PPARD +294T】C polymorphism and serum lipid levels is different between the Bai Ku Yao and Han populations.The discrepancy between the two ethnic groups might partly result from different PPARD +294T】C polymorphism or PPARD gene-enviromental interactions,subgroup of the Yao minority in China.展开更多
Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primar...Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.展开更多
The brain is one of the most common metastatic sites for carcinoma,especially for breast cancer,the second leading cause of brain metastases(BrM)after lung cancer[1].During organ‐tropic metastases,cancer cells have t...The brain is one of the most common metastatic sites for carcinoma,especially for breast cancer,the second leading cause of brain metastases(BrM)after lung cancer[1].During organ‐tropic metastases,cancer cells have to survive and expand in target organs through a process involving a complex interplay between invading cells and the microenvironment.展开更多
基金supported by the National Key R&D Program of China (2022YFE0196200)the National Natural Science Foundation of China–Deutsche Forschungsgemeinschaft of Germany (31761133021)+3 种基金the National Natural Science Foundation of China (31970469 and 31701794)the earmarked fund for Modern Agro-industry Technology Research System, China (2023CYJSTX01-20)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (2017104)the Fund for Shanxi “1331 Project”, China
文摘Low-density lipoprotein receptor-related protein 2(LRP2)is a multifunctional endocytic receptor expressed in epithelial cells.In mammals,it acts as an endocytic receptor that mediates the cellular uptake of cholesterol-containing apolipoproteins to maintain lipid homeostasis.However,little is known about the role of LRP2 in lipid homeostasis in insects.In the present study,we investigated the function of LRP2 in the migratory locust Locusta migratoria(LmLRP2).The mRNA of LmLRP2 is widely distributed in various tissues,including integument,wing pads,foregut,midgut,hindgut,Malpighian tubules and fat body,and the amounts of LmLRP2 transcripts decreased gradually in the early stages and then increased in the late stages before ecdysis during the nymphal developmental stage.Fluorescence immunohistochemistry revealed that the LmLRP2 protein is mainly located in cellular membranes of the midgut and hindgut.Using RNAi to silence LmLRP2 caused molting defects in nymphs(more than 60%),and the neutral lipid was found to accumulate in the midgut and surface of the integument,but not in the fat body,of dsLmLRP2-treated nymphs.The results of a lipidomics analysis showed that the main components of lipids(diglyceride and triglyceride)were significantly increased in the midgut,but decreased in the fat body and hemolymph.Furthermore,the content of total triglyceride was significantly increased in the midgut,but markedly decreased in the fat body and hemolymph in dsLmLRP2-injected nymphs.Our results indicate that LmLRP2 is located in the cellular membranes of midgut cells,and is required for lipid export from the midgut to the hemolymphand fat body in locusts.
基金supported by the National Natural Science Foundation of China,No.82201460(to YH)Nanjing Medical University Science and Technology Development Fund,No.NMUB20210202(to YH).
文摘Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
基金Supported by The National Natural Science Foundation of China,No.82070455Natural Science Foundation of Jiangsu Province,No.BK20201225Medical Innovation Team Project of Jiangsu Province,No.CXTDA2017010。
文摘BACKGROUND Advanced glycation end products(AGEs)are diabetic metabolic toxic products that cannot be ignored.Nε-(carboxymethyl)lysine(CML),a component of AGEs,could increase macrophage lipid uptake,promote foam cell formation,and thereby accelerate atherosclerosis.The receptor for AGEs(RAGE)and cluster of differentiation 36(CD36)were the receptors of CML.However,it is still unknown whether RAGE and CD36 play key roles in CML-promoted lipid uptake.AIM Our study aimed to explore the role of RAGE and CD36 in CML-induced macrophage lipid uptake.METHODS In this study,we examined the effect of CML on lipid uptake by Raw264.7 macrophages.After adding 10 mmol/L CML,the lipid accumulation in macrophages was confirmed by oil red O staining.Expression changes of CD36 and RAGE were detected with immunoblotting and quantitative real-time polymerase chain reaction.The interaction between CML with CD36 and RAGE was verified by immunoprecipitation.We synthesized a novel N-succinimidyl-4-18Ffluorobenzoate-CML radioactive probe.Radioactive receptor-ligand binding assays were performed to test the binding affinity between CML with CD36 and RAGE.The effects of blocking CD36 or RAGE on CML-promoting lipid uptake were also detected.RESULTS The study revealed that CML significantly promoted lipid uptake by macrophages.Immunoprecipitation and radioactive receptor-ligand binding assays indicated that CML could specifically bind to both CD36 and RAGE.CML had a higher affinity for CD36 than RAGE.ARG82,ASN71,and THR70 were the potential interacting amino acids that CD36 binds to CML Anti-CD36 and anti-RAGE could block the uptake of CML by macrophages.The lipid uptake promotion effect of CML was significantly attenuated after blocking CD36 or RAGE.CONCLUSION Our results suggest that the binding of CML with CD36 and RAGE promotes macrophage lipid uptake.
文摘17β-estradiol modulates the activity of D2 receptors in the regulation of food intake and body weight. The functional lack of 17β-estradiol in postmenopausal women could create a dietary imbalance and cause body weight gain. This study aimed to better understand the interferences that could exist between 17β-estradiol, D2 receptors and the selection of carbohydrate, fat and protein consumption, as well as their consequences on body weight gain by using an animal model of the menopause. Ovariectomy exacerbates the consumption of foods rich in lipids. Thus confirming an inhibitory action of 17β-estradiol (E2) on the consumption of these types of foods. This consumption stimulates body weight gain, which is promoted by the high caloric content of these foods and not by the amount consumed. Our results showed a direct involvement of D2 receptors in food choice. This choice would be made according to the two (2) isoforms of the D2 receptors. The D2/BR isoform directs towards a high carbohydrate consumption, without causing a gain in body weight. While D2/SUL, promotes high fat food consumption, causing an increase in body weight. In women, 17β-estradiol modulates the activity ratio between these two D2 receptor isoforms to ensure energy and homeostatic balance, stabilizing food intake and body weight.
基金supported by the National Natural Science Foundation of China,No.81971125(to ZYH).
文摘Oxidized low-density lipoprotein receptor 1(OLR1)is upregulated in neurons and participates in hypertension-induced neuronal apoptosis.OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive-induced stroke.Therefore,OLR1 is likely involved in the progress of intracerebral hemorrhage.In this study,we examined the potential role of OLR1 in intracerebral hemorrhage using a rat model.OLR1 small interfering RNA(10μL;50 pmol/μL)was injected into the right basal ganglia to knock down OLR1.Twenty-four hours later,0.5 U collagenase type VII was injected to induce intracerebral hemorrhage.We found that knockdown of OLR1 attenuated neurological behavior impairment in rats with intracerebral hemorrhage and reduced hematoma,neuron loss,inflammatory reaction,and oxidative stress in rat brain tissue.We also found that silencing of OLR1 suppressed ferroptosis induced by intracerebral hemorrhage and the p38 signaling pathway.Therefore,silencing OLR1 exhibits protective effects against secondary injury of intracerebral hemorrhage.These findings suggest that OLR1 may be a novel potential therapeutic target for intracerebral hemorrhage.
文摘Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical Research investigated the role of retinoic acid receptor responder 2(RARRES2)in regulating lipid metabolism in BCBrM,highlighting the clinical relevance of alterations in lipid metabolites,such as phosphatidylcholine(PC)and triacylglycerols(TAGs),by RARRES2 through the modulation of phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway.This commentary aims to elaborate on the key findings and their relevance to the field.
基金supported by the National Natural Science Foundation of China[grant number 81973038]Science,Technology and Innovation Commission of Shenzhen Municipality,China[grant number JCYJ20200109142446804].
文摘Objective To explore the association of single nucleotide polymorphisms(SNPs)of the vitamin D receptor gene(VDR)with circulating lipids considering gender differences.Methods Of the Han Chinese adults recruited from a health examination center for inclusion in the study,the circulating lipids,25-hydroxyvitamin D(25OHD),and other parameters were measured.The VDR SNPs of Cdx2(rs11568820),Fok1(rs2228570),Apa1(rs7975232),and Taq1(rs731236)were genotyped with a qPCR test using blood DNA samples,and their associations with lipids were analyzed using logistic regression.Results In the female participants(n=236 with dyslipidemia and 888 without dyslipidemia),multiple genotype models of Fok1 indicated a positive correlation of B(not A)alleles with LDLC level(P<0.05).In the male participants(n=299 with dyslipidemia and 564 without dyslipidemia),the recessive model of Cdx2 and the additive and recessive models of Fok1 differed(P<0.05)between the HDLC-classified subgroups,respectively,and Fok1 BB and Cdx2 TT presented interactions with 25OHD in the negative associations with HDLC(P<0.05).Conclusion In the Chinese Han adults included in the study,the Fok1 B-allele of VDR was associated with higher LDLC in females,and the Fok1 B-allele and the Cdx2 T-allele of VDR were associated with lower HDLC in males.The interaction of VD and Fok1 BB or Cdx2 TT in males synergistically decreased HDLC levels.
基金Natural Science Foundation of Hebei Province,No.21377772DNo.H2022406034National Natural Scientific Foundation of China,No.81672700.
文摘BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism.AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance.METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC.The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells.We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells.Finally,we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells.RESULTS Compared to normal mucosa,REG4 mRNA expression was high in CRC(P<0.05)but protein expression was low.An inverse correlation existed between lymph node and distant metastases,tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression(P<0.05),but vice versa for REG4 protein expression.REG4-related genes included:Chemokine activity;taste receptors;protein-DNA and DNA packing complexes;nucleosomes and chromatin;generation of second messenger molecules;programmed cell death signals;epigenetic regulation and DNA methylation;transcription repression and activation by DNA binding;insulin signaling pathway;sugar metabolism and transfer;and neurotransmitter receptors(P<0.05).REG4 exposure or overexpression promoted proliferation,antiapoptosis,migration,and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway.REG4 was involved in chemoresistance not through de novo lipogenesis,but lipid droplet assembly.REG4 inhibited the transcription of acetyl-CoA carboxylase 1(ACC1)and ATP-citrate lyase(ACLY)by disassociating the complex formation of anti-acetyl(AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY.CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly.REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.
文摘NMDA receptor channels play a significant role in learning and memory and their dysfunction can cause neuronal cell death leading to dementia. Research had shown that lipids change the risk for dementia, especially some omega-3 lipids appear to lower Alz-heimer’s risk, yet only limited research exists on the modulation of NMDA receptor channels by lipids. Here we review recent literature concerning molecular determinants that influence the NMDA receptor channel gating via membrane lipids and fatty acids with profound significance for understanding how altered NMDA signalling leads to neuronal cell death linked to age-related dementia’s. Future discovery of lipid-like modulators of NMDA receptor function offer the potential for the development of new bioceu-ticals and affordable nutritional supplements to combat neuronal degeneration as well as to promote well being and healthy aging.
文摘Objectives Bai Ku Yao(White-trousers Yaos)is a special branch of Yao minority in China.They are now living in both Lihu and Baxu villages,Nandan County, Guangxi,China.The population size is about 30,000.The special customs and culture of Bai Ku Yao,including their special clothing,intra-ethnic marriages and alcohol intake are still completely conserved to the present day.In previous epidemiologic studies,we found that the serum lipid levels and the prevalence of hyperlipidaemia were lower in Bai Ku Yao than in Han Chinese from the same region.This ethnic difference in serum lipid profiles is still not well known.We hypothesized that there may be significant differences in some genetic polymorphismsssociation of low density lipoprotein receptor (LDL-R) genepolymorphism and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations.Methods A total of 1024 subjects of Bai Ku Yao and 792 participants of Han Chinese were stud- ied by a stratified randomized cluster sampling.Epidemiological survey was carried out using internationally standardized methods.Information on demographics,socioeconomic status, and lifestyle factors was collected with standardized questionnaires. The height,weight,waist circumference,blood pressure, and serum total cholesterol(TC),triglyceride(TG), high-density lipoprotein cholesterol(HDL-C),low-density lipoprotein cholesterol(LDL-C),apolipoprotein(Apo) A1, and ApoB were measured.Body massindex(BMI,kg/m2) was calculated.Genotyping of the LDL-RAvaⅡwas performed by polymerse chain reaction and restriction fragment length polymorphism combined with gel electrophoresis,and then confirmed by direct sequencing.Results(l)The height,weight,serum TC,HDL-C,LDL-C,ApoAl levels and the ratio of ApoAl to ApoB were lower in Bai Ku Yao than in Han Chinese(P【0.01 for all),whereas the percentage of subjects who consumed alcohol or smoked cigarettes was higher in Bai Ku Yao than in Han Chinese(P【0.01 for each).(2) The frequency of A+ allele in Bai Ku Yao was 34.5%,and the frequencies of A-A-,A-A+ and A+A + genotypes were 42.6%,45.9%and 11.5%;respectively. The frequency of A+ allele in Han Chinese was 19.3%(P【0.001),and the frequencies of A-A-,A-A + and A+A+ genotypes were 64.9%,31.6%and 3.5%(P【0.001);respectively. The frequencies of A-A-,A-A+ and A+A+ genotypes in Bai Ku Yao were significant difference between males and females,between normal TC and high TC subgroup, and between normal LDL-C and high LDL-C subgroup (P【0.05 for all),whereas the frequencies of A- and A+ ? alleles in Han Chinese were significant difference between males and females(P【0.05).(3) Serum LDL-C levels in Bai Ku Yao were significant difference among the A-A-, A-A+ and A+A+ genotypes(P【0.05),the A+ carriers had higher serum LDL-C levels.Serum HDL-C levels in Han Chiese were significant difference among the A-A-,A-A + and A+A+ genotypes(P【0.01),the A+ carriers had higher serum HDL-C levels.(4) After adjusting other factors,the prevalence of LDL-C abnormality was still higher in Han Chiese than in Bai Ku Yao.The prevalence of TC abnormality in Han Chinese was almost twice high as in Bai Ku Yao. The age and diet were common risk factor for TC abnormality. No effect of AvaⅡgenotype or alcohol consumption on the TC abnormality was found,but the combination of geno-type and alcohol consumption can increase the prevalence of TC abnormality[Exp(B) =(1.154)].Age was negatively cor- related with TG level.Conclusions Serum TC and LDL-C levels were lower in Bai Ku Yao than in Han Chinese.There were significant differences in the AvaⅡallele and genotype frequencies between the he A+ carriers in Bai Ku Yao had higher serum LDL-C levels,whereas the A+ carriers in Han had higher serum HDL-C levels.Interactions between alcohol consumption or cigarette smoking and the LDL-R AvaⅡgenotype were also observed.The differences in the serum lipid profiles between the two ethnic groups might partly result from different genotypic frequency of LDL-R AvaⅡpolymorphism or differentgene-enviromental interactions.Bai Ku Yao and Han population,the frequency of A + allele was higher in Bai Ku Yao than in Han.T between the two ethnic groups.Therefore,the aim of the present study was to detect the
文摘Objectives The association of peroxisome prolif-erator -activated receptor delta(PPARD) +294T】C polymorphism and serum lipid levels is inconsistent in several previous studies.Bai Ku Yao is an isolated association of PPARD +294T】C(rs2016520) polymorphism and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations.Methods A total of 609 subjects of Bai Ku Yao and 573 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples.Genotyping of the PPARD +294T】C polymorphism was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing.Results The levels of serum total cholesterol(TC),high-density lipoprotein cholesterol(HDL-C),apolipoprotein(Apo) AI and ApoB were lower in Bai Ku Yao than in Han(P【0.001 for all).The frequency of T and C alleles was 77.50%and 22.50%in Bai Ku Yao,and 72.43%and 27.57%in Han (P【0.01);respectively.The frequency of TT,TC and CC genotypes was 60.59%,33.83%and 5.53%in Bai Ku Yao, and 52.18%,40.50%and 7.32%in Han(P【0.05);respectively. The levels of LDL-C,ApoB and the ratio of ApoAI to ApoB in Bai Ku Yao were different among the three genotypes in females but not in males(P【0.05 for all).The subjects with TT and TC genotypes had lower serum LDL-C and ApoB levels and higher the ratio of ApoAI to ApoB than the CC genotype in females.The levels of TC and ApoB in the total Han population were different among the three genotypes (P【0.05 for all).The C allele carriers had higher serum TC and ApoB levels than the C allele noncarriers.When serum lipid levels were analyzed according to sex,the difference in serum TC levels in Han was significant in males(P【0.01) but not in females,whereas the difference in serum ApoB levels was significant in females(P【0.05)but not in males. Serum TC and ApoB levels were correlated with genotypes in Han(P【0.05 for each) but not in Bai Ku Yao.Serum lipid parameters were also correlated with sex,age,body massindex, alcohol consumption,cigarette smoking,and blood pressure in both ethnic groups.Conclusions These results suggest that the association of PPARD +294T】C polymorphism and serum lipid levels is different between the Bai Ku Yao and Han populations.The discrepancy between the two ethnic groups might partly result from different PPARD +294T】C polymorphism or PPARD gene-enviromental interactions,subgroup of the Yao minority in China.
基金financially supported by the Science and Technology Innovation Program of Hunan Province,No.2022RC1220(to WP)China Postdoctoral Science Foundation,No.2022M711733(to ZZ)+2 种基金the National Natural Science Foundation of China,No.82160920(to ZZ)Hebei Postdoctoral Scientific Research Project,No.B2022003040(to ZZ)Hunan Flagship Department of Integrated Traditional Chinese and Western Medicine(to WP)。
文摘Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
文摘The brain is one of the most common metastatic sites for carcinoma,especially for breast cancer,the second leading cause of brain metastases(BrM)after lung cancer[1].During organ‐tropic metastases,cancer cells have to survive and expand in target organs through a process involving a complex interplay between invading cells and the microenvironment.