The complexity/performance balanced decoder for low-density parity-check (LDPC) codes is preferred in practical wireless communication systems. A low complexity LDPC decoder for the Consultative Committee for Space ...The complexity/performance balanced decoder for low-density parity-check (LDPC) codes is preferred in practical wireless communication systems. A low complexity LDPC decoder for the Consultative Committee for Space Data Systems (CCSDS) standard is achieved in DSP. An ap- proximate decoding algorithm, normalized rain-sum algorithm, is used in the implementation for its low amounts of computation. To reduce the performance loss caused by the approximation, the pa- rameters of the normalized min-sum algorithm are determined by calculating and finding the mini- mum value of thresholds through density evolution. The minimum value which indicates the best per- formance of the decoding algorithm is corresponding with the optimized parameters. In implementa- tion, the memory cost is saved by decomposing the parity-check matrix into submatrices to store and the computation of passing message in decoding is accelerated by using the intrinsic function of DSP. The performance of the decoder with optimized factors is simulated and compared with the ideal BP decoder. The result shows they have about the same performance.展开更多
This paper extends the class of Low-Density Parity-Check (LDPC) codes that can be constructed from shifted identity matrices. To construct regular LDPC codes, a new method is proposed. Two simple inequations are adopt...This paper extends the class of Low-Density Parity-Check (LDPC) codes that can be constructed from shifted identity matrices. To construct regular LDPC codes, a new method is proposed. Two simple inequations are adopted to avoid the short cycles in Tanner graph, which makes the girth of Tanner graphs at least 8. Because their parity-check matrices are made up of circulant matrices, the new codes are quasi-cyclic codes. They perform well with iterative decoding.展开更多
This paper studies the nonsystematic Low-Density Parity-Check(LDPC)codes based onSymmetric Balanced Incomplete Block Design(SBIBD).First,it is concluded that the performancedegradation of nonsystematic linear block co...This paper studies the nonsystematic Low-Density Parity-Check(LDPC)codes based onSymmetric Balanced Incomplete Block Design(SBIBD).First,it is concluded that the performancedegradation of nonsystematic linear block codes is bounded by the average row weight of generalizedinverses of their generator matrices and code rate.Then a class of nonsystematic LDPC codes con-structed based on SBIBD is presented.Their characteristics include:both generator matrices andparity-check matrices are sparse and cyclic,which are simple to encode and decode;and almost arbi-trary rate codes can be easily constructed,so they are rate-compatible codes.Because there aresparse generalized inverses of generator matrices,the performance of the proposed codes is only0.15dB away from that of the traditional systematic LDPC codes.展开更多
A low-complexity algorithm is proposed in this paper in order to optimize irregular low-density parity-check (LDPC) codes.The algorithm proposed can calculate the noise threshold by means of a one-dimensional densit...A low-complexity algorithm is proposed in this paper in order to optimize irregular low-density parity-check (LDPC) codes.The algorithm proposed can calculate the noise threshold by means of a one-dimensional density evolution and search the optimal degree profiles with fast-convergence differential evolution,so that it has a lower complexity and a faster convergence speed.Simulation resuits show that the irregular LDPC codes optimized by the presented algorithm can also perform better than Turbo codes at moderate block length even with less computation cost.展开更多
This paper presents a matrix permuting approach to the construction of Low-Density Parity-Check (LDPC) code. It investigates the structure of the sparse parity-check matrix defined by Gallager. It is discovered that t...This paper presents a matrix permuting approach to the construction of Low-Density Parity-Check (LDPC) code. It investigates the structure of the sparse parity-check matrix defined by Gallager. It is discovered that the problem of constructing the sparse parity-check matrix requires an algorithm that is efficient in search environments and also is able to work with constraint satisfaction problem. The definition of Q-matrix is given, and it is found that the queen algorithm enables to search the Q-matrix. With properly permuting Q-matrix as sub-matrix, the sparse parity-check matrix which satisfied constraint condition is created, and the good regular-LDPC code that is called the Q-matrix LDPC code is generated. The result of this paper is significant not only for designing low complexity encoder, improving performance and reducing complexity of iterative decoding arithmetic, but also for building practical system of encodable and decodable LDPC code.展开更多
In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the ...In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the analysis of the code rate and parameters of these eight kinds of structures, we find that the construction of low-density parity-check matrix tends to be more flexible and the parameter variability is enhanced. We propose that the current development cost should be lower with the progress of electronic technology and we need research on more practical Low-Density Parity-Check Codes (LDPC). Combined with the application of the quantum distribution key, we urgently need to explore the research direction of relevant theories and technologies of LDPC codes in other fields of quantum information in the future.展开更多
In this paper, the Multiple Input Multiple Output (MIMO) doubly-iterative receiver which consists of the Probabilistic Data Association detector (PDA) and Low-Density Parity-Check Code (LDPC) decoder is developed. The...In this paper, the Multiple Input Multiple Output (MIMO) doubly-iterative receiver which consists of the Probabilistic Data Association detector (PDA) and Low-Density Parity-Check Code (LDPC) decoder is developed. The receiver performs two iterative decoding loops. In the outer loop, the soft information is exchanged between the PDA detector and the LDPC decoder. In the inner loop, it is exchanged between variable node and check node decoders inside the LDPC decoder. On the light of the Extrinsic Information Transfer (EXIT) chart technique, an LDPC code degree profile optimization algorithm is developed for the doubly-iterative receiver. Simulation results show the doubly-receiver with optimized irregular LDPC code can have a better performance than the one with the regular one.展开更多
Free-space optical(FSO)communication is of supreme importance for designing next-generation networks.Over the past decades,the radio frequency(RF)spectrum has been the main topic of interest for wireless technology.Th...Free-space optical(FSO)communication is of supreme importance for designing next-generation networks.Over the past decades,the radio frequency(RF)spectrum has been the main topic of interest for wireless technology.The RF spectrum is becoming denser and more employed,making its availability tough for additional channels.Optical communication,exploited for messages or indications in historical times,is now becoming famous and useful in combination with error-correcting codes(ECC)to mitigate the effects of fading caused by atmospheric turbulence.A free-space communication system(FSCS)in which the hybrid technology is based on FSO and RF.FSCS is a capable solution to overcome the downsides of current schemes and enhance the overall link reliability and availability.The proposed FSCS with regular low-density parity-check(LDPC)for coding techniques is deliberated and evaluated in terms of signal-to-noise ratio(SNR)in this paper.The extrinsic information transfer(EXIT)methodology is an incredible technique employed to investigate the sum-product decoding algorithm of LDPC codes and optimize the EXIT chart by applying curve fitting.In this research work,we also analyze the behavior of the EXIT chart of regular/irregular LDPC for the FSCS.We also investigate the error performance of LDPC code for the proposed FSCS.展开更多
Utilizing commercial off-the-shelf(COTS) components in satellites has received much attention due to the low cost. However, commercial memories suffer severe reliability problems in radiation environments. This paper ...Utilizing commercial off-the-shelf(COTS) components in satellites has received much attention due to the low cost. However, commercial memories suffer severe reliability problems in radiation environments. This paper studies the low-density parity-check(LDPC) coding scheme for improving the reliability of multi-level-cell(MLC) NAND Flash memory in radiation environments. Firstly, based on existing physical experiment works, we introduce a new error model for heavyion irradiations; secondly, we explore the optimization of writing voltage allocation to maximize the capacity of the storage channel; thirdly, we design the degree distribution of LDPC codes that is specially suitable for the proposed model; finally, we propose a joint detection-decoding scheme based on LDPC codes, which estimates the storage channel state and executes an adaptive log-likelihood ratio(LLR) calculation to achieve better performance. Simulation results show that, compared with the conventional LDPC coding scheme, the proposed scheme may almost double the lifetime of the MLC NAND Flash memory in radiation environments.展开更多
This letter proposes a novel and simple construction of regular Low-Density Parity-Check (LDPC) codes using sparse binary sequences. It utilizes the cyclic cross correlation function of sparse sequences to generate co...This letter proposes a novel and simple construction of regular Low-Density Parity-Check (LDPC) codes using sparse binary sequences. It utilizes the cyclic cross correlation function of sparse sequences to generate codes with girth8. The new codes perform well using the sumproduct decoding. Low encodingcomplexity can also be achieved due to the inherent quasi-cyclic structure of the codes.展开更多
Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first...Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.展开更多
This paper proposes a parallel cyclic shift structure of address decoder to realize a high-throughput encoding and decoding method for irregular-quasi-cyclic low-density parity-check(IR-QC-LDPC)codes,with a dual-diago...This paper proposes a parallel cyclic shift structure of address decoder to realize a high-throughput encoding and decoding method for irregular-quasi-cyclic low-density parity-check(IR-QC-LDPC)codes,with a dual-diagonal parity structure.A normalized min-sum algorithm(NMSA)is employed for decoding.The whole verification of the encoding and decoding algorithm is simulated with Matlab,and the code rates of 5/6 and 2/3 are selected respectively for the initial bit error ratio as 6%and 1.04%.Based on the results of simulation,multi-code rates are compatible with different basis matrices.Then the simulated algorithms of encoder and decoder are migrated and implemented on the field programmable gate array(FPGA).The 183.36 Mbps throughput of encoder and the average 27.85 Mbps decoding throughput with the initial bit error ratio 6%are realized based on FPGA.展开更多
A novel low-complexity weighted symbol-flipping algorithm with flipping patterns to decode nonbinary low-density parity-check codes is proposed. The proposed decoding procedure updates the hard-decision received symbo...A novel low-complexity weighted symbol-flipping algorithm with flipping patterns to decode nonbinary low-density parity-check codes is proposed. The proposed decoding procedure updates the hard-decision received symbol vector iteratively in search of a valid codeword in the symbol vector space. Only one symbol is flipped in each iteration, and symbol flipping function, which is employed as the symbol flipping metric, combines the number of failed checks and the reliabilities of the received bits and calculated symbols. A scheme to avoid infinite loops and select one symbol to flip in high order Galois field search is also proposed. The design of flipping pattern's order and depth, which is dependent of the computational requirement and error performance, is also proposed and exemplified. Simulation results show that the algorithm achieves an appealing tradeoff between performance and computational requirement over relatively low Galois field for short to medium code length.展开更多
A novel adaptive ordered LDPC (low-density parity-check) coded OFDM (orthogonal frequency-division multiplexing) transmission technique is proposed to exploit different error probabilities of irregular LDPC coded ...A novel adaptive ordered LDPC (low-density parity-check) coded OFDM (orthogonal frequency-division multiplexing) transmission technique is proposed to exploit different error probabilities of irregular LDPC coded bits in OFDM systems. Assuming that the CSI (channel state information) is known at the transmitter, the irregular LDPC coded bits are ordered according to their degrees and then allocated into subcarriers adaptively. Bits with higher degrees are allocated into less attenuated subcarriers and bits with lower degrees are allocated into deep attenuated subcarriers. Quantization on CSI feedback can be applied to minimize the signaling overhead. Performance of this strategy is analyzed by density evolution and numerical simulation. Simulation results show that about a 1 to 1.5 dB gain in terms of SNR ( signal to noise ratio) can be achieved over frequency-selective fading channels compared to conventional LDPC coded OFDM systems without ordering, and the proposed scheme is robust to CSI quantization.展开更多
Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This l...Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This letter proposes a variable non-uniform quantized Belief Propaga-tion(BP)algorithm.The BP decoding is analyzed by density evolution with Gaussian approximation.Since the probability density of messages can be well approximated by Gaussian distribution,by theunbiased estimation of variance,the distribution of messages can be tracked during the iteration.Thusthe non-uniform quantization scheme can be optimized to minimize the distortion.Simulation resultsshow that the variable non-uniform quantization scheme can achieve better error rate performance andfaster decoding convergence than the conventional non-uniform quantization and uniform quantizationschemes.展开更多
Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rat...Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.展开更多
A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and...A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and the designed codes perform very close to the Shannon limit with iterative decoding. Simulations show that the designed QC-LDPC codes have almost the same performance with the existing EG-LDPC codes.展开更多
A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filt...A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filtering the bad points, because the designed parity-check matrixes using these points have the short cycles in Tanner graph of codes. Then one of the best points from the residual good points of every line in the p-plane will be found, respectively. The optimal point is also singled out according to the bit error rate (BER) performance of the QC-LDPC codes at last. Explicit necessary and sufficient conditions for the QC-LDPC codes to have no short cycles are presented which are in favor of removing the bad points in the p-plane. Since preventing the short cycles also prevents the small stopping sets, the proposed construction method also leads to QC-LDPC codes with a higher stopping distance.展开更多
A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the enco...A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.展开更多
The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead ...The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead to the bit error rate (BER) performance of QC-LDPC codes being much poorer than that of randomly constructed LDPC codes even decoding failure. To solve the problem, some theorems of the specific chosen parity-check matrix of QC-LDPC codes without small stopping sets and small girth are proposed. A novel construction for QC-LDPC codes with long block lengths is presented by multiplying mmin or the multiple of mmin, which is the minimum order of the identity matrix for the chosen parity-check matrix. The simulation results show that the specific chosen parity-check matrix of QC-LDPC codes can effectively avoid specified stopping sets and small girth and exhibit excellent BER performance than random LDPC codes with the same longer codes length.展开更多
基金Supported by the National Natural Science Foundation of China (61205116)
文摘The complexity/performance balanced decoder for low-density parity-check (LDPC) codes is preferred in practical wireless communication systems. A low complexity LDPC decoder for the Consultative Committee for Space Data Systems (CCSDS) standard is achieved in DSP. An ap- proximate decoding algorithm, normalized rain-sum algorithm, is used in the implementation for its low amounts of computation. To reduce the performance loss caused by the approximation, the pa- rameters of the normalized min-sum algorithm are determined by calculating and finding the mini- mum value of thresholds through density evolution. The minimum value which indicates the best per- formance of the decoding algorithm is corresponding with the optimized parameters. In implementa- tion, the memory cost is saved by decomposing the parity-check matrix into submatrices to store and the computation of passing message in decoding is accelerated by using the intrinsic function of DSP. The performance of the decoder with optimized factors is simulated and compared with the ideal BP decoder. The result shows they have about the same performance.
基金Supported by the Key Project of National Nature Science Foundation of China(No.60390540)
文摘This paper extends the class of Low-Density Parity-Check (LDPC) codes that can be constructed from shifted identity matrices. To construct regular LDPC codes, a new method is proposed. Two simple inequations are adopted to avoid the short cycles in Tanner graph, which makes the girth of Tanner graphs at least 8. Because their parity-check matrices are made up of circulant matrices, the new codes are quasi-cyclic codes. They perform well with iterative decoding.
基金the National Natural Science Foundation of China(No.60272009,No.60472045,and No.60496313).
文摘This paper studies the nonsystematic Low-Density Parity-Check(LDPC)codes based onSymmetric Balanced Incomplete Block Design(SBIBD).First,it is concluded that the performancedegradation of nonsystematic linear block codes is bounded by the average row weight of generalizedinverses of their generator matrices and code rate.Then a class of nonsystematic LDPC codes con-structed based on SBIBD is presented.Their characteristics include:both generator matrices andparity-check matrices are sparse and cyclic,which are simple to encode and decode;and almost arbi-trary rate codes can be easily constructed,so they are rate-compatible codes.Because there aresparse generalized inverses of generator matrices,the performance of the proposed codes is only0.15dB away from that of the traditional systematic LDPC codes.
基金Leading Academic Discipline Project of Shanghai Municipal Education Commission,China(No.J51801)Shanghai Second Polytechnic University Foundation,China(No.QD209008)Leading Academic Discipline Project of Shanghai Second Polytechnic University,China(No.XXKZD1302)
文摘A low-complexity algorithm is proposed in this paper in order to optimize irregular low-density parity-check (LDPC) codes.The algorithm proposed can calculate the noise threshold by means of a one-dimensional density evolution and search the optimal degree profiles with fast-convergence differential evolution,so that it has a lower complexity and a faster convergence speed.Simulation resuits show that the irregular LDPC codes optimized by the presented algorithm can also perform better than Turbo codes at moderate block length even with less computation cost.
基金Supported by the National Natural Science Foundation of China (No.60572050)by the National Science Foundation of Hubei Province (No.2004ABA049)
文摘This paper presents a matrix permuting approach to the construction of Low-Density Parity-Check (LDPC) code. It investigates the structure of the sparse parity-check matrix defined by Gallager. It is discovered that the problem of constructing the sparse parity-check matrix requires an algorithm that is efficient in search environments and also is able to work with constraint satisfaction problem. The definition of Q-matrix is given, and it is found that the queen algorithm enables to search the Q-matrix. With properly permuting Q-matrix as sub-matrix, the sparse parity-check matrix which satisfied constraint condition is created, and the good regular-LDPC code that is called the Q-matrix LDPC code is generated. The result of this paper is significant not only for designing low complexity encoder, improving performance and reducing complexity of iterative decoding arithmetic, but also for building practical system of encodable and decodable LDPC code.
文摘In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the analysis of the code rate and parameters of these eight kinds of structures, we find that the construction of low-density parity-check matrix tends to be more flexible and the parameter variability is enhanced. We propose that the current development cost should be lower with the progress of electronic technology and we need research on more practical Low-Density Parity-Check Codes (LDPC). Combined with the application of the quantum distribution key, we urgently need to explore the research direction of relevant theories and technologies of LDPC codes in other fields of quantum information in the future.
基金Supported by the National Natural Science Foundation of China (No. 60772061)Science Foundation of Nanjing University of Posts and Telecommunications (No. NY207132)
文摘In this paper, the Multiple Input Multiple Output (MIMO) doubly-iterative receiver which consists of the Probabilistic Data Association detector (PDA) and Low-Density Parity-Check Code (LDPC) decoder is developed. The receiver performs two iterative decoding loops. In the outer loop, the soft information is exchanged between the PDA detector and the LDPC decoder. In the inner loop, it is exchanged between variable node and check node decoders inside the LDPC decoder. On the light of the Extrinsic Information Transfer (EXIT) chart technique, an LDPC code degree profile optimization algorithm is developed for the doubly-iterative receiver. Simulation results show the doubly-receiver with optimized irregular LDPC code can have a better performance than the one with the regular one.
文摘Free-space optical(FSO)communication is of supreme importance for designing next-generation networks.Over the past decades,the radio frequency(RF)spectrum has been the main topic of interest for wireless technology.The RF spectrum is becoming denser and more employed,making its availability tough for additional channels.Optical communication,exploited for messages or indications in historical times,is now becoming famous and useful in combination with error-correcting codes(ECC)to mitigate the effects of fading caused by atmospheric turbulence.A free-space communication system(FSCS)in which the hybrid technology is based on FSO and RF.FSCS is a capable solution to overcome the downsides of current schemes and enhance the overall link reliability and availability.The proposed FSCS with regular low-density parity-check(LDPC)for coding techniques is deliberated and evaluated in terms of signal-to-noise ratio(SNR)in this paper.The extrinsic information transfer(EXIT)methodology is an incredible technique employed to investigate the sum-product decoding algorithm of LDPC codes and optimize the EXIT chart by applying curve fitting.In this research work,we also analyze the behavior of the EXIT chart of regular/irregular LDPC for the FSCS.We also investigate the error performance of LDPC code for the proposed FSCS.
基金supported by the National Basic Research Project of China(973)(2013CB329006)National Natural Science Foundation of China(NSFC,91538203)the new strategic industries development projects of Shenzhen City(JCYJ20150403155812833)
文摘Utilizing commercial off-the-shelf(COTS) components in satellites has received much attention due to the low cost. However, commercial memories suffer severe reliability problems in radiation environments. This paper studies the low-density parity-check(LDPC) coding scheme for improving the reliability of multi-level-cell(MLC) NAND Flash memory in radiation environments. Firstly, based on existing physical experiment works, we introduce a new error model for heavyion irradiations; secondly, we explore the optimization of writing voltage allocation to maximize the capacity of the storage channel; thirdly, we design the degree distribution of LDPC codes that is specially suitable for the proposed model; finally, we propose a joint detection-decoding scheme based on LDPC codes, which estimates the storage channel state and executes an adaptive log-likelihood ratio(LLR) calculation to achieve better performance. Simulation results show that, compared with the conventional LDPC coding scheme, the proposed scheme may almost double the lifetime of the MLC NAND Flash memory in radiation environments.
基金Supported by Key Project of the National Natural Science Foundation of China (No.60496311).
文摘This letter proposes a novel and simple construction of regular Low-Density Parity-Check (LDPC) codes using sparse binary sequences. It utilizes the cyclic cross correlation function of sparse sequences to generate codes with girth8. The new codes perform well using the sumproduct decoding. Low encodingcomplexity can also be achieved due to the inherent quasi-cyclic structure of the codes.
基金The National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.
基金supported by the National Natural Science Foundation of China(11705191)the Anhui Provincial Natural Science Foundation(1808085QF180)the Natural Science Foundation of Shanghai(18ZR1443600)
文摘This paper proposes a parallel cyclic shift structure of address decoder to realize a high-throughput encoding and decoding method for irregular-quasi-cyclic low-density parity-check(IR-QC-LDPC)codes,with a dual-diagonal parity structure.A normalized min-sum algorithm(NMSA)is employed for decoding.The whole verification of the encoding and decoding algorithm is simulated with Matlab,and the code rates of 5/6 and 2/3 are selected respectively for the initial bit error ratio as 6%and 1.04%.Based on the results of simulation,multi-code rates are compatible with different basis matrices.Then the simulated algorithms of encoder and decoder are migrated and implemented on the field programmable gate array(FPGA).The 183.36 Mbps throughput of encoder and the average 27.85 Mbps decoding throughput with the initial bit error ratio 6%are realized based on FPGA.
文摘A novel low-complexity weighted symbol-flipping algorithm with flipping patterns to decode nonbinary low-density parity-check codes is proposed. The proposed decoding procedure updates the hard-decision received symbol vector iteratively in search of a valid codeword in the symbol vector space. Only one symbol is flipped in each iteration, and symbol flipping function, which is employed as the symbol flipping metric, combines the number of failed checks and the reliabilities of the received bits and calculated symbols. A scheme to avoid infinite loops and select one symbol to flip in high order Galois field search is also proposed. The design of flipping pattern's order and depth, which is dependent of the computational requirement and error performance, is also proposed and exemplified. Simulation results show that the algorithm achieves an appealing tradeoff between performance and computational requirement over relatively low Galois field for short to medium code length.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2002AA123031)
文摘A novel adaptive ordered LDPC (low-density parity-check) coded OFDM (orthogonal frequency-division multiplexing) transmission technique is proposed to exploit different error probabilities of irregular LDPC coded bits in OFDM systems. Assuming that the CSI (channel state information) is known at the transmitter, the irregular LDPC coded bits are ordered according to their degrees and then allocated into subcarriers adaptively. Bits with higher degrees are allocated into less attenuated subcarriers and bits with lower degrees are allocated into deep attenuated subcarriers. Quantization on CSI feedback can be applied to minimize the signaling overhead. Performance of this strategy is analyzed by density evolution and numerical simulation. Simulation results show that about a 1 to 1.5 dB gain in terms of SNR ( signal to noise ratio) can be achieved over frequency-selective fading channels compared to conventional LDPC coded OFDM systems without ordering, and the proposed scheme is robust to CSI quantization.
基金the Aerospace Technology Support Foun-dation of China(No.J04-2005040).
文摘Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This letter proposes a variable non-uniform quantized Belief Propaga-tion(BP)algorithm.The BP decoding is analyzed by density evolution with Gaussian approximation.Since the probability density of messages can be well approximated by Gaussian distribution,by theunbiased estimation of variance,the distribution of messages can be tracked during the iteration.Thusthe non-uniform quantization scheme can be optimized to minimize the distortion.Simulation resultsshow that the variable non-uniform quantization scheme can achieve better error rate performance andfaster decoding convergence than the conventional non-uniform quantization and uniform quantizationschemes.
基金This work was supported in part by National Natural Science Foundation of China(No.61671324)the Director’s Funding from Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM201712).
文摘Low-density parity-check(LDPC)codes are widely used due to their significant errorcorrection capability and linear decoding complexity.However,it is not sufficient for LDPC codes to satisfy the ultra low bit error rate(BER)requirement of next-generation ultra-high-speed communications due to the error floor phenomenon.According to the residual error characteristics of LDPC codes,we consider using the high rate Reed-Solomon(RS)codes as the outer codes to construct LDPC-RS product codes to eliminate the error floor and propose the hybrid error-erasure-correction decoding algorithm for the outer code to exploit erasure-correction capability effectively.Furthermore,the overall performance of product codes is improved using iteration between outer and inner codes.Simulation results validate that BER of the product code with the proposed hybrid algorithm is lower than that of the product code with no erasure correction.Compared with other product codes using LDPC codes,the proposed LDPC-RS product code with the same code rate has much better performance and smaller rate loss attributed to the maximum distance separable(MDS)property and significant erasure-correction capability of RS codes.
基金Supported by the National Key Basic Research Program (973) Project (No. 2010CB328300)the 111 Project (No. B08038)
文摘A new method for constructing Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) codes based on Euclidean Geometry (EG) is presented. The proposed method results in a class of QC-LDPC codes with girth of at least 6 and the designed codes perform very close to the Shannon limit with iterative decoding. Simulations show that the designed QC-LDPC codes have almost the same performance with the existing EG-LDPC codes.
基金supported by the National Natural Science Foundation of China (60572093)Specialized Research Fund for the Doctoral Program of Higher Education (20050004016)
文摘A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filtering the bad points, because the designed parity-check matrixes using these points have the short cycles in Tanner graph of codes. Then one of the best points from the residual good points of every line in the p-plane will be found, respectively. The optimal point is also singled out according to the bit error rate (BER) performance of the QC-LDPC codes at last. Explicit necessary and sufficient conditions for the QC-LDPC codes to have no short cycles are presented which are in favor of removing the bad points in the p-plane. Since preventing the short cycles also prevents the small stopping sets, the proposed construction method also leads to QC-LDPC codes with a higher stopping distance.
文摘A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.
基金supported by the National Natural Science Foundation of China (60572093)Specialized Research Fund for the Doctoral Program of Higher Education (20050004016)
文摘The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead to the bit error rate (BER) performance of QC-LDPC codes being much poorer than that of randomly constructed LDPC codes even decoding failure. To solve the problem, some theorems of the specific chosen parity-check matrix of QC-LDPC codes without small stopping sets and small girth are proposed. A novel construction for QC-LDPC codes with long block lengths is presented by multiplying mmin or the multiple of mmin, which is the minimum order of the identity matrix for the chosen parity-check matrix. The simulation results show that the specific chosen parity-check matrix of QC-LDPC codes can effectively avoid specified stopping sets and small girth and exhibit excellent BER performance than random LDPC codes with the same longer codes length.