Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward tra...Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.展开更多
A large amount of marine noise pollution from coastal industrial construction and the water transportation industry affects the growth and development of marine life,which is a big issue threatening marine organisms.H...A large amount of marine noise pollution from coastal industrial construction and the water transportation industry affects the growth and development of marine life,which is a big issue threatening marine organisms.However,most studies have focused on vertebrates,such as marine mammals and fishes,and little is known about the effects of noise on invertebrates.Therefore,the impacts of low-frequency noise(100,300,and 500 Hz)on behavioral and physiological responsesof the sea slug(Onchidium reevesii)were investigated.Under laboratory conditions,sea slugs were stimulated with low-frequency noise at 100,300,and 500 Hz for 1 h.Then,hemolymph enzyme activities(glucose,albumin,triglycerides,superoxide dismutase,catalase,and malondialdehyde)were measured,and mRNA expression of the hsp70 gene was detected in hemolymph and the nervous system by quantitative realtime polymerase chain reaction(qRT-PCR)analysis,while expression of the hsp70 protein was analyzed by immunohistochemistry.The results demonstrated that sea slugs were away from the stimulus source under the influence of low-frequency noise compared to the control group.Enzyme activities,as well as hsp70 gene mRNA and protein expression levels,were significantly higher in the noiseexposed groups than those in the control group.Overall,these changes indicate that low-frequency noise caused oxidative stress in sea slugs in vivo,and the oxidative damage gradually increased when the noise frequency was increased from 100 to 500 Hz.展开更多
Low-frequency flicker noise is usually associated with material defects or imperfection of fabrication procedure. Up to now, there is only very limited knowledge about flicker noise of the topological insulator, whose...Low-frequency flicker noise is usually associated with material defects or imperfection of fabrication procedure. Up to now, there is only very limited knowledge about flicker noise of the topological insulator, whose topologically protected conducting surface is theoretically immune to back scattering. To suppress the bulk conductivity we synthesize antimony doped Bi2Se3 nanowires and conduct transport measurements at cryogenic temperatures. The low-frequency current noise measurement shows that the noise amplitude at the high-drain current regime can be described by Hooge's empirical relationship, while the noise level is significantly lower than that predicted by Hooge's model near the Dirac point. Furthermore, different frequency responses of noise power spectrum density for specific drain currents at the low drain current regime indicate the complex origin of noise sources of topological insulator.展开更多
Total ionizing dose effect induced low frequency degradations in 130nm partially depleted silicon-on-insulator (SOI) technology are studied by ^60Co γ -ray irradiation. The experimental results show that the flick...Total ionizing dose effect induced low frequency degradations in 130nm partially depleted silicon-on-insulator (SOI) technology are studied by ^60Co γ -ray irradiation. The experimental results show that the flicker noise at the front gate is not affected by the radiation since the radiation induced trapped charge in the thin gate oxide can be ignored. However, both the Lorenz spectrum noise, which is related to the linear kink effect (LKE) at the front gate, and the flicker noise at the back gate are sensitive to radiation. The radiation induced trapped charge in shallow trench isolation and the buried oxide can deplete the nearby body region and can activate the traps which reside in the depletion region. These traps act as a GR center and accelerate the consumption of the accumulated holes in the floating body. It results in the attenuation of the LKE and the increase of the Lorenz spectrum noise. Simultaneously, the radiation induced trapped charge in the buried oxide can directly lead to an enhanced flicker noise at the back gate. The trapped charge density in the buried oxide is extracted to increase from 2.21×10^18 eV^-1 cm^-3 to 3.59×10^18?eV^-1 cm^-3 after irradiation.展开更多
Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we ex...Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric,and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al2 O3 gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about 1.18×10^-3.Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the △N-△μ model, and the total trap density near the IZO/oxide interface is about 1.23×10^18 cm^-3eV^-1.展开更多
Ions Sensitive Field Effect Transistors (ISFETs) are becoming the platform sensors for important chemical and biomedical applications. However, the accuracy of ISFET output measurement is greatly affected by the prese...Ions Sensitive Field Effect Transistors (ISFETs) are becoming the platform sensors for important chemical and biomedical applications. However, the accuracy of ISFET output measurement is greatly affected by the presences of low-frequency noise, drift and slow response of the device. This requires more safety in measured results and the tools of analysis. In this paper, we present fundamental limits on the sensitivity of ISFETs micro-sensors, arising from intrinsic and extrinsic noise sources. We developed an algorithm in MATLAB in order to model the frequency analysis of the 1/f noise in ISFET sensor using Hooge theory. We have shown that the 1/f noise of the ISFETs sensors is due to both the electrochemical system (pH solution) and the MOS component (canal size, insulator thickness). The temperature effect on the ISFET noise and the signal conditioning are also performed.展开更多
Peculiarities of the low-frequency noise spectroscopy of hydrogen gas sensors made on MgFeO4 n-type porous semiconductor covered by the palladium catalytic nanosize particles are investigated. Behavior of the low-freq...Peculiarities of the low-frequency noise spectroscopy of hydrogen gas sensors made on MgFeO4 n-type porous semiconductor covered by the palladium catalytic nanosize particles are investigated. Behavior of the low-frequency noise spectral density and its exponent value from sensitive layer thickness in the frequency range 2 - 300 Hz are analyzed. Sensitivity of the sensor calculated by the noise method is several tenth times higher as compared with the resistive method. It is shown that besides of the well-known applications, noise spectroscopy can be also used for definition of the unknown thickness of gas sensitive layer, for definition of the sensitive layer subsurface role in the formation of the low-frequency noises and for definition of the intensity of trapping-detrapping processes of the gas molecules.展开更多
Emerging evidence has indicated the linkage of traffic noise with cardiovascular diseases,However,there’s a lack of extensive studies exploring the linkage of traffic noise with cardiometabolic risk factors such as o...Emerging evidence has indicated the linkage of traffic noise with cardiovascular diseases,However,there’s a lack of extensive studies exploring the linkage of traffic noise with cardiometabolic risk factors such as obesity.Additionally,the role of diet in the associations remains unknown.The aim is to prospectively examine the linkage of road traffic noise with obesity,especially by focusing on evaluating the impact of meat.Participants recruited in the UK Biobank with at least one repeated measurement of obesity indicators including body mass index(BMI),waist circumference(WC),waist-to-hip ratio(WhR),and waist-to-height ratio(WhtR)were included.The Common Noise Assessment Methods of the simplified version were used to estimate road traffic noise exposure.Participants were categorized into“less meat intake”and“more meat intake”based on the median of meat intake,assessed by the frequency of unprocessed red meat and processed meat consumption.Modified Poisson regression models were employed to evaluate the linkage of road traffic noise with obesity.Additionally,the modification effects of meat intake on this relationship were evaluated.The incidence risk ratios(IRRs)and 95%confidence interval(CI)of overall obesity,WC-based central obesity,WhR-based central obesity,and WhtR-based central obesity were 1.11(1.02,1.21),1.09(1.03,1.14),1.06(1.02,1.10),and 1.08(1.02,1.13),respectively,for every 10 dB(A)increase for noise.Compared with individuals with lower meat intake,those with higher meat intake exhibited a stronger linkage of road traffic noise with central obesity.The prospective study demonstrates a linkage of road traffic noise with obesity,emphasizing the significance of diet on traffic noise-related obesity risk.展开更多
The spontaneous activity of the blood oxygen level-dependent(BOLD)signal has been demonstrated as a promising way for understanding how the brain intrinsically organized.However,most of these studies focused solely on...The spontaneous activity of the blood oxygen level-dependent(BOLD)signal has been demonstrated as a promising way for understanding how the brain intrinsically organized.However,most of these studies focused solely on the spontaneous activity in gray matter(GM)and not on white matter(WM).This is展开更多
Aiming at predicting ship propeller's cavitation low-frequency noise spectrum, a hy- brid method combining the cavitation multi-phase flow unsteady simulation with the pulsating spherical bubble radiated noise theory...Aiming at predicting ship propeller's cavitation low-frequency noise spectrum, a hy- brid method combining the cavitation multi-phase flow unsteady simulation with the pulsating spherical bubble radiated noise theory was proposed. Then, both of the NSRDC4383 5-bladed propeller and a 7-bladed highly-skewed propeller's cavitation low-frequency noise spectrum sub- jected to the full appended SUBOFF submarine's nominal wake were investigated. The effects of thrust loading and cavity extension on the discrete line spectrum frequency and its spectrum source level were analyzed. The improved Sauer cavitation model and modified shear stress transport turbulence models were adopted to simulate the propeller sheet cavitation along with integrated verification. The cavity volume acceleration related to the characteristic length rep- resenting the unsteady sheet cavitation extension, which was more reasonable than the spherical cavity hypothesis, was used to the cavitation low-frequency noise spectrum prediction. Results show that the 7-bladed propeller truly appreciates the advantages of smaller loads, latter cav- itation inception and lower cavitating tonal noise comparing to that of the 5 blades. Under the same cavitation index based on ship speed, the interaction of wake inflow and blades will induce significantly low frequency line spectrums and strengthen their source level. Given the submarine wake, cavitation index and rotating speed condition, the thrust, torque and cavity area of blades will decrease with the decreasing load, but the fluctuated acceleration amplitude of cavity volume and the tonal noise spectrum level increases, and the discrete line spectrum components shift mainly to the even times of the BPF harmonics from the odd. If the cavita- tion extension lightens, the BPF harmonics line spectrums will be depressed, and the spectrum level at 1 kHz reduces 2.54 dB. The numerical method above constructs a numerical system to measure the cavitating hydrodynamics and noise performances of ship propellers, which can be productive for the numerical design of wake adapted low noise submarine propeller.展开更多
Low-frequency noises (LFN) and noise-like oscillations (NLO) in GaAs metal semiconductor field effect transistor (MESFET) channel current were investigated under sidegating bias conditions.It was found that the fluctu...Low-frequency noises (LFN) and noise-like oscillations (NLO) in GaAs metal semiconductor field effect transistor (MESFET) channel current were investigated under sidegating bias conditions.It was found that the fluctuations of the channel current were directly dependent upon the sidegating bias.As the sidegating bias decreased,the amplitudes of the oscillations would increase correspondingly.Furthermore,the LFN and NLO would attenuate sharply when the sidegating bias increased to more than a certain voltage.Two mechanisms are presented to demonstrate that the effective substrate resistivity or the channel-substrate junction modulated by sidegating bias and deep level traps would take responsibilities for the LFN and NLO.展开更多
Low-frequency noise behavior in the MOSFETs processed in 65 run technology is investigated in this paper.Low-frequency noise for NMOS transistors agrees with McWhorter's theory(carrier number fluctuation),low-frequ...Low-frequency noise behavior in the MOSFETs processed in 65 run technology is investigated in this paper.Low-frequency noise for NMOS transistors agrees with McWhorter's theory(carrier number fluctuation),low-frequency noise in the sub-threshold regime agrees with McWhorter's theory for PMOS transistors while it agree with Hooge's theory(carrier mobility fluctuation) in the channel strong inversion regime.According to carrier number fluctuation model,the extracted trap densities near the interface between channel and gate oxide for NMOS and PMOS transistor are 3.94×10^(17) and 3.56×10^(18) cm^(-3)/eV respectively.According to carrier mobility fluctuation model,the extracted average Hooge's parameters are 2.42×10^(-5) and 4×10^(-4).By consideration of BSIM compact model,it is shown that two noise parameters(NOIA and NOIB) can model the intrinsic channel noise.The extracted NOIA and NOIB are constants for PMOS and their values are equal to 3.94×10^(17) cm^(-3)/eV and 9.31×10^(-4) V^(-1).But for NMOS,NOIA is also a constant while NOIB is inversely proportional to the effective gate voltage.The extracted NOIA and NOIB for NMOS are equal to 3.56×10^(18) cm^(-3)/eV and 1.53×10^(-2) V^(-1).Good agreement between simulation and experimental results is achieved.展开更多
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2013AA031502 and 2014AA041902the National Natural Science Foundation of China under Grant Nos 11174085,51132004,and 51302086+3 种基金the Guangdong Natural Science Foundation under Grant Nos S2011030001349 and S20120011380the China National Funds for Distinguished Young Scientists under Grant No 61325024the Science and Technology Project of Guangdong Province under Grant No 2013B090500028the’Cross and Cooperative’Science and Technology Innovation Team Project of Chinese Academy of Sciences under Grant No 2012-119
文摘Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.
基金supported by the Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals(No.A1-3605-21-000202)the Capacity Enhancement of Aquatic Germplasm Resources Research and Support Platform of Shanghai Ocean University(No.A1-3201-20-300206).
文摘A large amount of marine noise pollution from coastal industrial construction and the water transportation industry affects the growth and development of marine life,which is a big issue threatening marine organisms.However,most studies have focused on vertebrates,such as marine mammals and fishes,and little is known about the effects of noise on invertebrates.Therefore,the impacts of low-frequency noise(100,300,and 500 Hz)on behavioral and physiological responsesof the sea slug(Onchidium reevesii)were investigated.Under laboratory conditions,sea slugs were stimulated with low-frequency noise at 100,300,and 500 Hz for 1 h.Then,hemolymph enzyme activities(glucose,albumin,triglycerides,superoxide dismutase,catalase,and malondialdehyde)were measured,and mRNA expression of the hsp70 gene was detected in hemolymph and the nervous system by quantitative realtime polymerase chain reaction(qRT-PCR)analysis,while expression of the hsp70 protein was analyzed by immunohistochemistry.The results demonstrated that sea slugs were away from the stimulus source under the influence of low-frequency noise compared to the control group.Enzyme activities,as well as hsp70 gene mRNA and protein expression levels,were significantly higher in the noiseexposed groups than those in the control group.Overall,these changes indicate that low-frequency noise caused oxidative stress in sea slugs in vivo,and the oxidative damage gradually increased when the noise frequency was increased from 100 to 500 Hz.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921703the National Natural Science Foundation of China under Grant Nos 11174357 and 11574379the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB07010300
文摘Low-frequency flicker noise is usually associated with material defects or imperfection of fabrication procedure. Up to now, there is only very limited knowledge about flicker noise of the topological insulator, whose topologically protected conducting surface is theoretically immune to back scattering. To suppress the bulk conductivity we synthesize antimony doped Bi2Se3 nanowires and conduct transport measurements at cryogenic temperatures. The low-frequency current noise measurement shows that the noise amplitude at the high-drain current regime can be described by Hooge's empirical relationship, while the noise level is significantly lower than that predicted by Hooge's model near the Dirac point. Furthermore, different frequency responses of noise power spectrum density for specific drain currents at the low drain current regime indicate the complex origin of noise sources of topological insulator.
基金Supported by the National Postdoctoral Program for Innovative Talents under Grant No BX201600037the Science and Technology Research Project of Guangdong Province under Grant Nos 20158090901048 and 2015B090912002the Distinguished Young Scientist Program of Guangdong Province under Grant No 2015A030306002
文摘Total ionizing dose effect induced low frequency degradations in 130nm partially depleted silicon-on-insulator (SOI) technology are studied by ^60Co γ -ray irradiation. The experimental results show that the flicker noise at the front gate is not affected by the radiation since the radiation induced trapped charge in the thin gate oxide can be ignored. However, both the Lorenz spectrum noise, which is related to the linear kink effect (LKE) at the front gate, and the flicker noise at the back gate are sensitive to radiation. The radiation induced trapped charge in shallow trench isolation and the buried oxide can deplete the nearby body region and can activate the traps which reside in the depletion region. These traps act as a GR center and accelerate the consumption of the accumulated holes in the floating body. It results in the attenuation of the LKE and the increase of the Lorenz spectrum noise. Simultaneously, the radiation induced trapped charge in the buried oxide can directly lead to an enhanced flicker noise at the back gate. The trapped charge density in the buried oxide is extracted to increase from 2.21×10^18 eV^-1 cm^-3 to 3.59×10^18?eV^-1 cm^-3 after irradiation.
基金Supported by the National Natural Science Foundation of China under Grant No 61574048the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2015B090901048the Pearl River S&T Nova Program of Guangzhou under Grant No 201710010172
文摘Low-frequency noise(LFN) in all operation regions of amorphous indium zinc oxide(a-IZO) thin film transistors(TFTs) with an aluminum oxide gate insulator is investigated. Based on the LFN measured results, we extract the distribution of localized states in the band gap and the spatial distribution of border traps in the gate dielectric,and study the dependence of measured noise on the characteristic temperature of localized states for a-IZO TFTs with Al2 O3 gate dielectric. Further study on the LFN measured results shows that the gate voltage dependent noise data closely obey the mobility fluctuation model, and the average Hooge's parameter is about 1.18×10^-3.Considering the relationship between the free carrier number and the field effect mobility, we simulate the LFN using the △N-△μ model, and the total trap density near the IZO/oxide interface is about 1.23×10^18 cm^-3eV^-1.
文摘Ions Sensitive Field Effect Transistors (ISFETs) are becoming the platform sensors for important chemical and biomedical applications. However, the accuracy of ISFET output measurement is greatly affected by the presences of low-frequency noise, drift and slow response of the device. This requires more safety in measured results and the tools of analysis. In this paper, we present fundamental limits on the sensitivity of ISFETs micro-sensors, arising from intrinsic and extrinsic noise sources. We developed an algorithm in MATLAB in order to model the frequency analysis of the 1/f noise in ISFET sensor using Hooge theory. We have shown that the 1/f noise of the ISFETs sensors is due to both the electrochemical system (pH solution) and the MOS component (canal size, insulator thickness). The temperature effect on the ISFET noise and the signal conditioning are also performed.
文摘Peculiarities of the low-frequency noise spectroscopy of hydrogen gas sensors made on MgFeO4 n-type porous semiconductor covered by the palladium catalytic nanosize particles are investigated. Behavior of the low-frequency noise spectral density and its exponent value from sensitive layer thickness in the frequency range 2 - 300 Hz are analyzed. Sensitivity of the sensor calculated by the noise method is several tenth times higher as compared with the resistive method. It is shown that besides of the well-known applications, noise spectroscopy can be also used for definition of the unknown thickness of gas sensitive layer, for definition of the sensitive layer subsurface role in the formation of the low-frequency noises and for definition of the intensity of trapping-detrapping processes of the gas molecules.
基金supported by the State Scholarship Fund of China Scholarship Council(No.202006015008,202006015015).
文摘Emerging evidence has indicated the linkage of traffic noise with cardiovascular diseases,However,there’s a lack of extensive studies exploring the linkage of traffic noise with cardiometabolic risk factors such as obesity.Additionally,the role of diet in the associations remains unknown.The aim is to prospectively examine the linkage of road traffic noise with obesity,especially by focusing on evaluating the impact of meat.Participants recruited in the UK Biobank with at least one repeated measurement of obesity indicators including body mass index(BMI),waist circumference(WC),waist-to-hip ratio(WhR),and waist-to-height ratio(WhtR)were included.The Common Noise Assessment Methods of the simplified version were used to estimate road traffic noise exposure.Participants were categorized into“less meat intake”and“more meat intake”based on the median of meat intake,assessed by the frequency of unprocessed red meat and processed meat consumption.Modified Poisson regression models were employed to evaluate the linkage of road traffic noise with obesity.Additionally,the modification effects of meat intake on this relationship were evaluated.The incidence risk ratios(IRRs)and 95%confidence interval(CI)of overall obesity,WC-based central obesity,WhR-based central obesity,and WhtR-based central obesity were 1.11(1.02,1.21),1.09(1.03,1.14),1.06(1.02,1.10),and 1.08(1.02,1.13),respectively,for every 10 dB(A)increase for noise.Compared with individuals with lower meat intake,those with higher meat intake exhibited a stronger linkage of road traffic noise with central obesity.The prospective study demonstrates a linkage of road traffic noise with obesity,emphasizing the significance of diet on traffic noise-related obesity risk.
基金supported by the National Natural Science Foundation of China (81401400 to G.J.J.,81471653 to W.L.,31571149,91432301 and 91232717 to K.W.)the Doctoral Foundation of Anhui Medical University (XJ201532 to G.J.J.)+3 种基金Youth Top-notch Talent Support Program of Anhui Medical University (to G.J.J.)the China Postdoctoral Science Foundation (2013M532229 to W.L.)National Basic Research Program of China (2015CB856405,2012CB720704,and 2011CB707805 to K.W.)Anhui Collaborative Innovation Center of Neuropsychiatric Disorder and Mental Health
文摘The spontaneous activity of the blood oxygen level-dependent(BOLD)signal has been demonstrated as a promising way for understanding how the brain intrinsically organized.However,most of these studies focused solely on the spontaneous activity in gray matter(GM)and not on white matter(WM).This is
基金supported by the National Natural Science Foundation of China(51009144)
文摘Aiming at predicting ship propeller's cavitation low-frequency noise spectrum, a hy- brid method combining the cavitation multi-phase flow unsteady simulation with the pulsating spherical bubble radiated noise theory was proposed. Then, both of the NSRDC4383 5-bladed propeller and a 7-bladed highly-skewed propeller's cavitation low-frequency noise spectrum sub- jected to the full appended SUBOFF submarine's nominal wake were investigated. The effects of thrust loading and cavity extension on the discrete line spectrum frequency and its spectrum source level were analyzed. The improved Sauer cavitation model and modified shear stress transport turbulence models were adopted to simulate the propeller sheet cavitation along with integrated verification. The cavity volume acceleration related to the characteristic length rep- resenting the unsteady sheet cavitation extension, which was more reasonable than the spherical cavity hypothesis, was used to the cavitation low-frequency noise spectrum prediction. Results show that the 7-bladed propeller truly appreciates the advantages of smaller loads, latter cav- itation inception and lower cavitating tonal noise comparing to that of the 5 blades. Under the same cavitation index based on ship speed, the interaction of wake inflow and blades will induce significantly low frequency line spectrums and strengthen their source level. Given the submarine wake, cavitation index and rotating speed condition, the thrust, torque and cavity area of blades will decrease with the decreasing load, but the fluctuated acceleration amplitude of cavity volume and the tonal noise spectrum level increases, and the discrete line spectrum components shift mainly to the even times of the BPF harmonics from the odd. If the cavita- tion extension lightens, the BPF harmonics line spectrums will be depressed, and the spectrum level at 1 kHz reduces 2.54 dB. The numerical method above constructs a numerical system to measure the cavitating hydrodynamics and noise performances of ship propellers, which can be productive for the numerical design of wake adapted low noise submarine propeller.
基金Project (No.KYJD09012) supported by the Fundamental Research Funds for the Central Universities,China
文摘Low-frequency noises (LFN) and noise-like oscillations (NLO) in GaAs metal semiconductor field effect transistor (MESFET) channel current were investigated under sidegating bias conditions.It was found that the fluctuations of the channel current were directly dependent upon the sidegating bias.As the sidegating bias decreased,the amplitudes of the oscillations would increase correspondingly.Furthermore,the LFN and NLO would attenuate sharply when the sidegating bias increased to more than a certain voltage.Two mechanisms are presented to demonstrate that the effective substrate resistivity or the channel-substrate junction modulated by sidegating bias and deep level traps would take responsibilities for the LFN and NLO.
基金supported by the National Natural Science Foundation of China(Nos.61574048,61204112)the Guangdong Natural Science Foundation(No.2014A030313656)
文摘Low-frequency noise behavior in the MOSFETs processed in 65 run technology is investigated in this paper.Low-frequency noise for NMOS transistors agrees with McWhorter's theory(carrier number fluctuation),low-frequency noise in the sub-threshold regime agrees with McWhorter's theory for PMOS transistors while it agree with Hooge's theory(carrier mobility fluctuation) in the channel strong inversion regime.According to carrier number fluctuation model,the extracted trap densities near the interface between channel and gate oxide for NMOS and PMOS transistor are 3.94×10^(17) and 3.56×10^(18) cm^(-3)/eV respectively.According to carrier mobility fluctuation model,the extracted average Hooge's parameters are 2.42×10^(-5) and 4×10^(-4).By consideration of BSIM compact model,it is shown that two noise parameters(NOIA and NOIB) can model the intrinsic channel noise.The extracted NOIA and NOIB are constants for PMOS and their values are equal to 3.94×10^(17) cm^(-3)/eV and 9.31×10^(-4) V^(-1).But for NMOS,NOIA is also a constant while NOIB is inversely proportional to the effective gate voltage.The extracted NOIA and NOIB for NMOS are equal to 3.56×10^(18) cm^(-3)/eV and 1.53×10^(-2) V^(-1).Good agreement between simulation and experimental results is achieved.