AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHO...AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR.展开更多
BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diff...BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.展开更多
BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for indivi...BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.展开更多
AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-con...AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-control study.Eighteen subjects with AACE and eighteen HCs were enrolled.MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner.Extraocular muscles(EOMs)were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator.To form posterior partial volumes(PPVs),the LR and MR cross-sections in the image planes 8,10,12,and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness.The data were classified according to the right eye,left eye,dominant eye,and non-dominant eye,and the differences in mean cross-sectional area,maximum cross-sectional area,and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively.RESULTS:There were no significant differences between the two groups of demographic characteristics.The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes(P=0.028).The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group(P=0.009,P=0.016).For the dominant eye,the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group(P=0.013),but not in the MR muscle(P=0.698).CONCLUSION:The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia.The LR muscle become larger to compensate for the enhanced convergence in the AACE.展开更多
BACKGROUND High-grade pancreatic intraepithelial neoplasia(PanIN)exhibits no mass and is not detected by any examination modalities.However,it can be diagnosed by pancreatic juice cytology from indirect findings.Most ...BACKGROUND High-grade pancreatic intraepithelial neoplasia(PanIN)exhibits no mass and is not detected by any examination modalities.However,it can be diagnosed by pancreatic juice cytology from indirect findings.Most previous cases were diagnosed based on findings of a focal stricture of the main pancreatic duct(MPD)and caudal MPD dilatation and subsequent pancreatic juice cytology using endoscopic retrograde cholangiopancreatography(ERCP).We experienced a case of high-grade PanIN with an unclear MPD over a 20-mm range,but without caudal MPD dilatation on magnetic resonance cholangiopancreatography(MRCP).CASE SUMMARY A 60-year-old female patient underwent computed tomography for a follow-up of uterine cancer post-excision,which revealed pancreatic cysts.MRCP revealed an unclear MPD of the pancreatic body at a 20-mm length without caudal MPD dilatation.Thus,course observation was performed.After 24 mo,MRCP revealed an increased caudal MPD caliber and a larger pancreatic cyst.We performed ERCP and detected atypical cells suspected of adenocarcinoma by serial pancreatic juice aspiration cytology examination.We performed a distal pancreatectomy and obtained a histopathological diagnosis of high-grade PanIN.Pancreatic parenchyma invasion was not observed,and curative resection was achieved.CONCLUSION High-grade Pan-IN may cause MPD narrowing in a long range without caudal MPD dilatation.展开更多
BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a we...BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a well-established treatment for FI.Given the increased need of magnetic resonance imaging(MRI)for diagnostics,the In-terStim which was previously used in sacral nerve stimulation was limited by MRI incompatibility.Medtronic MRI-compatible InterStim was approved by the United States Food and Drug Administration in August 2020 and has been widely used.AIM To evaluate the efficacy,outcomes and complications of the MRI-compatible InterStim.METHODS Data of patients who underwent MRI-compatible Medtronic InterStim placement at UPMC Williamsport,University of Minnesota,Advocate Lutheran General Hospital,and University of Wisconsin-Madison was pooled and analyzed.Patient demographics,clinical features,surgical techniques,complications,and outcomes were analyzed.Strengthening the Reporting of Observational studies in Epidemiology(STROBE)cross-sectional reporting guidelines were used.RESULTS Seventy-three patients had the InterStim implanted.The mean age was 63.29±12.2 years.Fifty-seven(78.1%)patients were females and forty-two(57.5%)patients had diabetes.In addition to incontinence,overlapping symptoms included diarrhea(23.3%),fecal urgency(58.9%),and urinary incontinence(28.8%).Fifteen(20.5%)patients underwent Peripheral Nerve Evaluation before proceeding to definite implant placement.Thirty-two(43.8%)patients underwent rechargeable InterStim placement.Three(4.1%)patients needed removal of the implant.Migration of the external lead connection was observed in 7(9.6%)patients after the stage I procedure.The explanation for one patient was due to infection.Seven(9.6%)patients had other complications like nerve pain,hematoma,infection,lead fracture,and bleeding.The mean follow-up was 6.62±3.5 mo.Sixty-eight(93.2%)patients reported significant improvement of symptoms on follow-up evaluation.CONCLUSION This study shows promising results with significant symptom improvement,good efficacy and good patient outcomes with low complication rates while using MRI compatible InterStim for FI.Further long-term follow-up and future studies with a larger patient population is recommended.展开更多
The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing i...The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing its feasibility,applications,challenges,and safety considerations.The heightened resolution and tissue contrast of 7 T MRI offer unprecedented diagnostic accuracy,particularly in neuroimaging.Applications range from neuro-oncology to neonatal brain imaging,showcasing its efficacy in detecting subtle structural abnormalities and providing enhanced insights into neurological conditions.Despite the promise,challenges such as high cost,discomfort,and safety concerns necessitate careful consideration.Research suggests that,with precautions,7 T MRI is feasible in paediatrics,yet ongoing studies and safety assessments are imperative.展开更多
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol...Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.展开更多
The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of...The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of reducing low-frequency noise has been developed.By combining Bloch’s theorem with the finite element method,the band structure is calculated.Numerical results indicate that this metamaterial can produce multiple low-frequency bandgaps within 500 Hz,with a bandgap ratio exceeding 50%.The first bandgap spans from 169.57 Hz to 216.42 Hz.To reveal the formation mechanism of the bandgap,a vibrational mode analysis is performed.Numerical analysis demonstrates that the bandgap is attributed to the suppression of elastic wave propagation by the vibrations of the structure’s two protruding corners and overall expansion vibrations.Additionally,detailed parametric analyses are conducted to investigate the effect ofθ,i.e.,the angle between the protruding corner of the structure and the horizontal direction,on the band structures and the total effective bandgap width.It is found that reducingθis conducive to obtaining lower frequency bandgaps.The propagation characteristics of elastic waves in the structure are explored by the group velocity,phase velocity,and wave propagation direction.Finally,the transmission characteristics of a finite periodic structure are investigated experimentally.The results indicate significant acceleration amplitude attenuation within the bandgap range,confirming the structure’s excellent low-frequency vibration suppression capability.展开更多
The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency di...The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency disturbance dynamic uniaxial compression tests on coal specimens using a self-developed dynamic-static load coupling electro-hydraulic servo system,and studied the strength evolutions,surface deformations,acoustic emission(AE)characteristic parameters,and the failure modes of coal specimens with different static preloading levels were studied.The disturbance damage is positively correlated with the coal specimen static preload level.Specifically,the cumulative AE count rates of the initial accelerated damage stage for the coal specimens with static preloading level of 60%and 70%of the uniaxial compressive strength(UCS)were 2.66 and 3.19 times that of the 50%UCS specimens,respectively.Macroscopically,this behaviour manifested as a decrease in the compressive strength,and the mean strengths of the disturbance-damaged coal specimens with 60%and 70%of UCS static preloading decreased by 8.53%and 9.32%,respectively,compared to those of the specimens under pure static loading.The crack sources,such as the primary fissures,strongly control the dynamic response of the coal specimen.The difference between the dynamic responses of the coal specimens and that of dense rocks is significant.展开更多
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and...Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.展开更多
The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra...The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.展开更多
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr...In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment.展开更多
Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functio...Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.展开更多
The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with un...The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing ac...To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions.展开更多
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ...The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.展开更多
A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic...A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency.An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency.The applicable range of the LF method on a given plasma scale is analyzed.The upper diagnostic limit for the ratio of the electron density(unit:m^(-3))to collision frequency(unit:Hz)exceeds 1×10^(11),enabling an electron density to exceed 1×10^(20)m^(-3)and a collision frequency to be less than 1 GHz.In this work,the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed.Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method.By comparing the diagnostic results of the two methods,the inversion results are relatively consistent with each other,thereby preliminarily verifying the feasibility of the LF method.The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization.The LF diagnostic path is a loop around the model,which is suitable for diagnosing the plasma that surrounds the model.Finally,the causes of diagnostic discrepancy between the two methods are analyzed.The proposed method provides a new avenue for diagnosing high-density enveloping plasma.展开更多
基金Supported by National Natural Science Foundation of China(No.82160195)Jiangxi Double-Thousand Plan High-Level Talent Project of Science and Technology Innovation(No.jxsq2023201036)+2 种基金Key R&D Program of Jiangxi Province(No.20223BBH80014)Science and Technology Project of Jiangxi Province Health Commission of Traditional Chinese Medicine(No.2022B258)Science and Technology Project of Jiangxi Health Commission(No.202210017).
文摘AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR.
基金the Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital,NO.CY2021-QNB09the Science and Technology Project of Gansu Province,NO.21JR11RA122+1 种基金Department of Education of Gansu Province:Innovation Fund Project,NO.2022B-056Gansu Province Clinical Research Center for Functional and Molecular Imaging,NO.21JR7RA438.
文摘BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.
文摘BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.
基金Supported by National Natural Science Foundation of China(No.82070998)Young Scientists Fund of the National Natural Science Foundation of China(No.82101174)+3 种基金Program of Beijing Hospitals Authority(No.XMLX202103)Program of Beijing Municipal Science&Technology Commission(No.Z201100005520044)Capital Health Development Research Special Project(No.2022-1-2053)Beijing Hospitals Authority Youth Programme(No.QML20230205).
文摘AIM:To investigate the difference of medial rectus(MR)and lateral rectus(LR)between acute acquired concomitant esotropia(AACE)and the healthy controls(HCs)detected by magnetic resonance imaging(MRI).METHODS:A case-control study.Eighteen subjects with AACE and eighteen HCs were enrolled.MRI scanning data were conducted in target-controlled central gaze with a 3-Tesla magnetic resonance scanner.Extraocular muscles(EOMs)were scanned in contiguous image planes 2-mm thick spanning the EOM origins to the globe equator.To form posterior partial volumes(PPVs),the LR and MR cross-sections in the image planes 8,10,12,and 14 mm posterior to the globe were summed and multiplied by the 2-mm slice thickness.The data were classified according to the right eye,left eye,dominant eye,and non-dominant eye,and the differences in mean cross-sectional area,maximum cross-sectional area,and PPVs of the MR and LR muscle in the AACE group and HCs group were compared under the above classifications respectively.RESULTS:There were no significant differences between the two groups of demographic characteristics.The mean cross-sectional area of the LR muscle was significantly greater in the AACE group than that in the HCs group in the non-dominant eyes(P=0.028).The maximum cross-sectional area of the LR muscle both in the dominant and non-dominant eye of the AACE group was significantly greater than the HCs group(P=0.009,P=0.016).For the dominant eye,the PPVs of the LR muscle were significantly greater in the AACE than that in the HCs group(P=0.013),but not in the MR muscle(P=0.698).CONCLUSION:The size and volume of muscles dominant eyes of AACE subjects change significantly to overcome binocular diplopia.The LR muscle become larger to compensate for the enhanced convergence in the AACE.
文摘BACKGROUND High-grade pancreatic intraepithelial neoplasia(PanIN)exhibits no mass and is not detected by any examination modalities.However,it can be diagnosed by pancreatic juice cytology from indirect findings.Most previous cases were diagnosed based on findings of a focal stricture of the main pancreatic duct(MPD)and caudal MPD dilatation and subsequent pancreatic juice cytology using endoscopic retrograde cholangiopancreatography(ERCP).We experienced a case of high-grade PanIN with an unclear MPD over a 20-mm range,but without caudal MPD dilatation on magnetic resonance cholangiopancreatography(MRCP).CASE SUMMARY A 60-year-old female patient underwent computed tomography for a follow-up of uterine cancer post-excision,which revealed pancreatic cysts.MRCP revealed an unclear MPD of the pancreatic body at a 20-mm length without caudal MPD dilatation.Thus,course observation was performed.After 24 mo,MRCP revealed an increased caudal MPD caliber and a larger pancreatic cyst.We performed ERCP and detected atypical cells suspected of adenocarcinoma by serial pancreatic juice aspiration cytology examination.We performed a distal pancreatectomy and obtained a histopathological diagnosis of high-grade PanIN.Pancreatic parenchyma invasion was not observed,and curative resection was achieved.CONCLUSION High-grade Pan-IN may cause MPD narrowing in a long range without caudal MPD dilatation.
文摘BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a well-established treatment for FI.Given the increased need of magnetic resonance imaging(MRI)for diagnostics,the In-terStim which was previously used in sacral nerve stimulation was limited by MRI incompatibility.Medtronic MRI-compatible InterStim was approved by the United States Food and Drug Administration in August 2020 and has been widely used.AIM To evaluate the efficacy,outcomes and complications of the MRI-compatible InterStim.METHODS Data of patients who underwent MRI-compatible Medtronic InterStim placement at UPMC Williamsport,University of Minnesota,Advocate Lutheran General Hospital,and University of Wisconsin-Madison was pooled and analyzed.Patient demographics,clinical features,surgical techniques,complications,and outcomes were analyzed.Strengthening the Reporting of Observational studies in Epidemiology(STROBE)cross-sectional reporting guidelines were used.RESULTS Seventy-three patients had the InterStim implanted.The mean age was 63.29±12.2 years.Fifty-seven(78.1%)patients were females and forty-two(57.5%)patients had diabetes.In addition to incontinence,overlapping symptoms included diarrhea(23.3%),fecal urgency(58.9%),and urinary incontinence(28.8%).Fifteen(20.5%)patients underwent Peripheral Nerve Evaluation before proceeding to definite implant placement.Thirty-two(43.8%)patients underwent rechargeable InterStim placement.Three(4.1%)patients needed removal of the implant.Migration of the external lead connection was observed in 7(9.6%)patients after the stage I procedure.The explanation for one patient was due to infection.Seven(9.6%)patients had other complications like nerve pain,hematoma,infection,lead fracture,and bleeding.The mean follow-up was 6.62±3.5 mo.Sixty-eight(93.2%)patients reported significant improvement of symptoms on follow-up evaluation.CONCLUSION This study shows promising results with significant symptom improvement,good efficacy and good patient outcomes with low complication rates while using MRI compatible InterStim for FI.Further long-term follow-up and future studies with a larger patient population is recommended.
文摘The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing its feasibility,applications,challenges,and safety considerations.The heightened resolution and tissue contrast of 7 T MRI offer unprecedented diagnostic accuracy,particularly in neuroimaging.Applications range from neuro-oncology to neonatal brain imaging,showcasing its efficacy in detecting subtle structural abnormalities and providing enhanced insights into neurological conditions.Despite the promise,challenges such as high cost,discomfort,and safety concerns necessitate careful consideration.Research suggests that,with precautions,7 T MRI is feasible in paediatrics,yet ongoing studies and safety assessments are imperative.
基金financial support from National Key R&D Program of China(MoST,2020YFA0711500)the National Natural Science Foundation of China(NSFC,21875114),(NSFC,52303348)+1 种基金111 Project(B18030)“The Fundamental Research Funds for the Central Universities”,Nankai University.
文摘Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.
基金supported by the National Natural Science Foundation of China(Nos.12272219,12372019,12072222,12132010,12021002,and 11991032)the Open Projects of State Key Laboratory for Strength and Structural Integrity of China(No.ASSIKFJJ202303002)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China(No.SKLTESKF1901)the Aeronautical Science Foundation of China(No.ASFC-201915048001)。
文摘The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of reducing low-frequency noise has been developed.By combining Bloch’s theorem with the finite element method,the band structure is calculated.Numerical results indicate that this metamaterial can produce multiple low-frequency bandgaps within 500 Hz,with a bandgap ratio exceeding 50%.The first bandgap spans from 169.57 Hz to 216.42 Hz.To reveal the formation mechanism of the bandgap,a vibrational mode analysis is performed.Numerical analysis demonstrates that the bandgap is attributed to the suppression of elastic wave propagation by the vibrations of the structure’s two protruding corners and overall expansion vibrations.Additionally,detailed parametric analyses are conducted to investigate the effect ofθ,i.e.,the angle between the protruding corner of the structure and the horizontal direction,on the band structures and the total effective bandgap width.It is found that reducingθis conducive to obtaining lower frequency bandgaps.The propagation characteristics of elastic waves in the structure are explored by the group velocity,phase velocity,and wave propagation direction.Finally,the transmission characteristics of a finite periodic structure are investigated experimentally.The results indicate significant acceleration amplitude attenuation within the bandgap range,confirming the structure’s excellent low-frequency vibration suppression capability.
基金Projects(51925402,52334005,52304094)supported by the National Natural Science Foundation of ChinaProject(20201102004)supported by the Shanxi Science and Technology Major Project,China。
文摘The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency disturbance dynamic uniaxial compression tests on coal specimens using a self-developed dynamic-static load coupling electro-hydraulic servo system,and studied the strength evolutions,surface deformations,acoustic emission(AE)characteristic parameters,and the failure modes of coal specimens with different static preloading levels were studied.The disturbance damage is positively correlated with the coal specimen static preload level.Specifically,the cumulative AE count rates of the initial accelerated damage stage for the coal specimens with static preloading level of 60%and 70%of the uniaxial compressive strength(UCS)were 2.66 and 3.19 times that of the 50%UCS specimens,respectively.Macroscopically,this behaviour manifested as a decrease in the compressive strength,and the mean strengths of the disturbance-damaged coal specimens with 60%and 70%of UCS static preloading decreased by 8.53%and 9.32%,respectively,compared to those of the specimens under pure static loading.The crack sources,such as the primary fissures,strongly control the dynamic response of the coal specimen.The difference between the dynamic responses of the coal specimens and that of dense rocks is significant.
基金The authors would like to acknowledge financial support from NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003-04-03)National Natural Science Foundation of China(41930425)+2 种基金Beijing Natural Science Foundation(8222073),R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-01)Scientific Research and Technology Development Project of PetroChina(2021DJ1206)National Key Research and Development Program of China(2018YFA0702504).
文摘Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.
基金This work was supported by the Applied Basic Research Program of Science and Technology Plan Project of Sichuan Province of China(No.2020YJ0252).
文摘The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.
基金National Natural Science Foundation of China(Grant Nos.51821003,52175524,61704158)the Natural Science Foundation of Shanxi Province(Grant No.202103021224206)Shanxi"1331 Project"Key Subjects Construction to provide fund for conducting experiments。
文摘In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment.
基金Project supported by the National Natural Science Foundation of China (Nos.12002195 and 12372015)the National Science Fund for Distinguished Young Scholars of China (No.12025204)the Program of Shanghai Municipal Education Commission of China (No.2019-01-07-00-09-E00018)。
文摘Based on the generalized Hamilton's principle,the nonlinear governing equation of an axially functionally graded(AFG)pipe is established.The non-trivial equilibrium configuration is superposed by the modal functions of a simply supported beam.Via the direct multi-scale method,the response and stability boundary to the pulsating fluid velocity are solved analytically and verified by the differential quadrature element method(DQEM).The influence of Young's modulus gradient on the parametric resonance is investigated in the subcritical and supercritical regions.In general,the pipe in the supercritical region is more sensitive to the pulsating excitation.The nonlinearity changes from hard to soft,and the non-trivial equilibrium configuration introduces more frequency components to the vibration.Besides,the increasing Young's modulus gradient improves the critical pulsating flow velocity of the parametric resonance,and further enhances the stability of the system.In addition,when the temperature increases along the axial direction,reducing the gradient parameter can enhance the response asymmetry.This work further complements the theoretical analysis of pipes conveying pulsating fluid.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51901163 and 12104171)the Fundamental Research Funds for the Central Universities(Grant No.2021XXJS025).
文摘The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
基金supported by the National Natural Science Foundation of China(No.52250287)the Outstanding Youth Science Fund Project of Shaanxi Province of China(No.2024JC-JCQN-49)。
文摘To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52107162 and 12202479)the Science and Technology Projects of Shaanxi Province,China(Grant Nos.2022CGBX-12 and 2022KXJ-57)the Science and Technology Projects of Xi’an City,China(Grant Nos.23KGDW0023-2022 and 23GXFW0011)。
文摘A non-contact low-frequency(LF)method of diagnosing the plasma surrounding a scaled model in a shock tube is proposed.This method utilizes the phase shift occurring after the transmission of an LF alternating magnetic field through the plasma to directly measure the ratio of the plasma loop average electron density to collision frequency.An equivalent circuit model is used to analyze the relationship of the phase shift of the magnetic field component of LF electromagnetic waves with the plasma electron density and collision frequency.The applicable range of the LF method on a given plasma scale is analyzed.The upper diagnostic limit for the ratio of the electron density(unit:m^(-3))to collision frequency(unit:Hz)exceeds 1×10^(11),enabling an electron density to exceed 1×10^(20)m^(-3)and a collision frequency to be less than 1 GHz.In this work,the feasibility of using the LF phase shift to implement the plasma diagnosis is also assessed.Diagnosis experiments on shock tube equipment are conducted by using both the electrostatic probe method and LF method.By comparing the diagnostic results of the two methods,the inversion results are relatively consistent with each other,thereby preliminarily verifying the feasibility of the LF method.The ratio of the electron density to the collision frequency has a relatively uniform distribution during the plasma stabilization.The LF diagnostic path is a loop around the model,which is suitable for diagnosing the plasma that surrounds the model.Finally,the causes of diagnostic discrepancy between the two methods are analyzed.The proposed method provides a new avenue for diagnosing high-density enveloping plasma.