期刊文献+
共找到95,788篇文章
< 1 2 250 >
每页显示 20 50 100
Fault Identification for Shear-Type Structures Using Low-Frequency Vibration Modes
1
作者 Cuihong Li Qiuwei Yang Xi Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2769-2791,共23页
Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use o... Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures.The main drawback of existing damage assessment methods is that they require accurate structural finite element models for damage assessment.However,for many shear-type structures,it is difficult to obtain accurate FEM.In order to avoid finite elementmodeling,amodel-freemethod for diagnosing shear structure defects is developed in this paper.This method only needs to measure a few low-order vibration modes of the structure.The proposed defect diagnosis method is divided into two stages.In the first stage,the location of defects in the structure is determined based on the difference between the virtual displacements derived from the dynamic flexibility matrices before and after damage.In the second stage,damage severity is evaluated based on an improved frequency sensitivity equation.Themain innovations of this method lie in two aspects.The first innovation is the development of a virtual displacement difference method for determining the location of damage in the shear structure.The second is to improve the existing frequency sensitivity equation to calculate the damage degree without constructing the finite elementmodel.Thismethod has been verified on a numerical example of a 22-story shear frame structure and an experimental example of a three-story steel shear structure.Based on numerical analysis and experimental data validation,it is shown that this method only needs to use the low-order modes of structural vibration to diagnose the defect location and damage degree,and does not require finite element modeling.The proposed method should be a very simple and practical defect diagnosis technique in engineering practice. 展开更多
关键词 Fault diagnosis shear steel structure vibration mode dynamic flexibility frequency sensitivity
下载PDF
A bio-inspired spider-like structure isolator for low-frequency vibration 被引量:2
2
作者 Guangdong SUI Shuai HOU +5 位作者 Xiaofan ZHANG Xiaobiao SHAN Chengwei HOU Henan SONG Weijie HOU Jianming LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1263-1286,共24页
This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The ... This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The curved beam is simplified as an inclined horizontal spring,and a static analysis is carried out to explore the effects of different structural parameters on the stiffness performance of the QZS isolator.The finite element simulation analysis verifies that the QZS isolator can significantly reduce the first-order natural frequency under the load in the QZS region.The harmonic balance method(HBM)is used to explore the effects of the excitation amplitude,damping ratio,and stiffness coefficient on the system’s amplitude-frequency response and transmissibility performance,and the accuracy of the analytical results is verified by the fourth-order Runge-Kutta integral method(RK-4).The experimental data of the QZS isolator prototype are fitted to a ninth-degree polynomial,and the RK-4 can theoretically predict the experimental results.The experimental results show that the QZS isolator has a lower initial isolation frequency and a wider isolation frequency bandwidth than the equivalent linear isolator.The frequency sweep test of prototypes with different harmonic excitation amplitudes shows that the initial isolation frequency of the QZS isolator is 3 Hz,and it can isolate 90%of the excitation signal at 7 Hz.The proposed biomimetic spider-like QZS isolator has high application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators. 展开更多
关键词 bionic isolation structure curved beam nonlinear stiffness quasi-zero stiffness(QzS) low-frequency vibration isolator
下载PDF
Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration
3
作者 Yong Zhao Xiqi Li +2 位作者 Lin Lei Ling Chen Zhiping Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2597-2610,共14页
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani... Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process. 展开更多
关键词 low-frequency vibration Low-permeability sandstone Uranium migration Permeability evolution mechanism Chemical reactive rate Optimum permeability
下载PDF
Improved uranium leaching efficiency from low-permeability sandstone using low-frequency vibration in the CO_(2)+O_(2) leaching process 被引量:2
4
作者 Yong Zhao Yong Gao +1 位作者 Caiwu Luo Jun Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期770-780,共11页
Extraction of uranium from low-permeability sandstone is a long-standing challenge in mining.The improvement of sandstone permeability has therefore become a key research focus to improve the uranium leaching effect.T... Extraction of uranium from low-permeability sandstone is a long-standing challenge in mining.The improvement of sandstone permeability has therefore become a key research focus to improve the uranium leaching effect.To address the low-permeability problem and corresponding leaching limits,leaching experiments are performed using newly developed equipment that could apply low-frequency vibration to the sandstone samples.The test results indicate that low-frequency vibration significantly improves the uranium leaching performance and permeability of the sandstone samples.The leaching effect of low-frequency vibration treatment is approximately nine times more effective than ultrasonic vibration treatment,whereas the concentration of uranium ions generated without vibration treatment is not detectable.Mathematical model that considers the combined action of physico-mechanical vibration and chemical erosion is established to describe the effect of low-frequency vibration on the permeability.The calculated results are in good agreement with the tested permeability values.This study thus offers a new method to effectively leach more uranium from low-permeability sandstone using CO_(2)+O_(2)and provides an insight into the impact of low-frequency vibration on the uranium leaching process. 展开更多
关键词 Uranium leaching low-frequency vibration Chemical erosion Low permeability Permeability model
下载PDF
Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear 被引量:1
5
作者 董远湘 张国华 +2 位作者 孙其诚 赵雪丹 牛晓娜 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第12期101-104,共4页
We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve... We present the numerical simulation results of a model granular assembly formed by spherical particles with tIertzian interaction subjected to a simple shear in the athermal quasi-static limit. The stress-strain curve is shown to separate into smooth, elastic branches followed by a subsequent plastic event. Mode analysis shows that the lowest-frequency vibrational mode is more localized, and eigenvalues and participation ratios of low- frequency modes exhibit similar power-law behavior as the system approaches plastic instability, indicating that the nature of plastic events in the granular system is also a saddle node bifurcation. The analysis of projection and spatial structure shows that over 75% contributions to the non-affine displacement field at a plastic instability come from the lowest-frequency mode, and the lowest-frequency mode is strongly spatially correlated with local plastic rearrangements, inferring that the lowest-frequency mode could be used as a predictor for future plastic rearrangements in the disordered system jammed marginally. 展开更多
关键词 Analysis of low-frequency vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear
下载PDF
Dimensionless Variation of Seepage in Porous Media with Cracks Stimulated by Low-Frequency Vibration
6
作者 Liming Zheng Xiaodong Han +2 位作者 Xinjun Yang Qingzhong Chu Guanghui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1055-1080,共26页
Pulse excitation or vibration stimulation was imposed on the low permeable formation with cracks to enhance the production or injection capacity.During that process,a coupling of wave-induced flow and initial flow in ... Pulse excitation or vibration stimulation was imposed on the low permeable formation with cracks to enhance the production or injection capacity.During that process,a coupling of wave-induced flow and initial flow in dual-porous media was involved.Researchers had done much work on the rule of wave propagation in fractured porous media,whereas attentions on the variation law of flow in developing low permeable formation with cracks under vibration stimulation were not paid.In this study,the effect of low-frequency vibration on the seepage in dual-porous media was examined for the application of wave stimulation technology in developing reservoirs with natural cracks.A model for seepage of single-phase liquid in porous media with cracks under low-frequency vibration excitation was built by combining wave propagating theory for porous media with cracks and dual-porous media seepage mechanics.A governing equation group for the model,which was expressed by dimensionless fluid and solid displacements,was derived and solved with a numerical method.Variable physical properties were simulated to check the applicability of external low-frequency vibration load on dual-porous media and a parametric study for various vibration parameters.Stimulation of low-frequency vibration affected flow velocities of crack and rock matrix fluids.Compared with that in single-porous media,the stimulation effect on the fluid inner matrix of dual-porous media was relatively weakened.Different optimal vibration parameters were needed to increase the channeling flow between the crack and rock matrix or to only promote the flow velocity in the rock matrix.The theoretical study examines wave-coupled seepage field in fractured porous media with results that are applicable for low-frequency stimulation technology. 展开更多
关键词 low-frequency vibration wave-induced flow dual-porous media CRACK dimensionless.
下载PDF
Low-Frequency Vibrations of Indole Derivatives by Terahertz Time-Domain Spectroscopy
7
作者 Ya-Ru Dang Shao-Ping Li +3 位作者 Hui Liu Shao-Xian Li Jian-Bing Zhang Hong-Wei Zhao 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第4期329-336,共8页
Several indole derivatives with different '3-' substituents have been investigated by terahertz (THz) time-domain spectroscopy. The low-frequency absorption spectra and refractive indices were obtained in the rang... Several indole derivatives with different '3-' substituents have been investigated by terahertz (THz) time-domain spectroscopy. The low-frequency absorption spectra and refractive indices were obtained in the range of 0.2 THz to 2.5 THz (7 cm-1 to 83 cm-1). These derivatives with different substituents present distinct features, which suggests that THz spectroscopy is sensitive to different structures and components of these chemicals. The density functional theory was employed to calculate the low-frequency vibrational properties of indole-3-carboxylic acid and indole-3-propionic acid based on their crystal structures, and the intermolecular interactions were involved. Meanwhile, the temperature dependence of the spectra agreed with the calculated results. The quantitative analysis of a ternary mixture was studied by taking the THz fingerprints into account, and the results demonstrate THz spectroscopy has great potential for the practical applications in biochemistry and pharmaceutics. 展开更多
关键词 Characteristic spectrum density functional theory indole derivatives low-frequency vibration terahertz.
下载PDF
Piezoelectric nanofoams with the interlaced ultrathin graphene confining Zn–N–C dipoles for efficient piezocatalytic H_(2) evolution under low-frequency vibration
8
作者 Penghui Hu Yan Xu +10 位作者 Yanhua Lei Jie Yuan Rui Lei Rong Hu Junkang Chen Difa Xu Shiying Zhang Ping Liu Xiangchao Zhang Xiaoqing Qiu Wenhui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期115-122,I0004,共9页
Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configuration... Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configurations,with hypersensitivity for mechanical stress,the piezoelectricity is created on the nonpiezoelectric graphene,and the hierarchical ZnNG exhibits obvious piezocatalytic activity of water splitting for H_(2) production even under mild agitation.The corresponding rate of H_(2) production is about 14.65 μmol g^(-1)h^(-1).It triggers a breakthrough in piezocatalytic H_(2) evolution under low-frequency vibration,and takes a significant step forward for piezocatalysis towards practical applications.Furthermore,the presented concept of confining atomic polar configuration for engineering piezoelectricity would open up new horizon for constructing new-type piezoelectrics based on both piezoelectric and nonpiezoelectric materials. 展开更多
关键词 Piezocatalysis Water splitting for H_(2)production low-frequency vibration Ultrathin graphene confining Zn–N–C DIPOLES
下载PDF
Modeling and power performance improvement of a piezoelectric energy harvester for low-frequency vibration environment 被引量:16
9
作者 Dongxing Cao Yanhui Gao Wenhua Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第4期894-911,共18页
A novel oscillator structure, bimorph piezoelectric cantilever beam with two-stepped variable thicknesses,is proposed to improve the energy harvestingperformance of the vibration energy harvester (VEH) under low-frequ... A novel oscillator structure, bimorph piezoelectric cantilever beam with two-stepped variable thicknesses,is proposed to improve the energy harvestingperformance of the vibration energy harvester (VEH) under low-frequency vibration environment. Firstly, the piezoelectric cantilever is segmented to obtain the energy functions based on the Euler-Bernoulli beam assumptions, and the Galerkin approach is utilized to discretize the energy functions. Applying boundary conditions and continuity conditions enforced at separation locations, the electromechanical coupled governing equations for the piezoelectric energy harvesterareintroduced by means of the Lagrange equations. Furthermore, the steady state response expressions are obtained for harmonic base excitations at arbitrary frequencies. Numerical results are computed and the effects ofthe lengths-ratio, thicknesses-ratio,end thicknessand load resistance on the output voltage, harvested power and power density are discussed. Moreover, to verify thecorrectness ofanalytical results, the finite element method (FEM)simulationis also conducted to analyze performance of the proposed VEH, where a good agreement is presented. All the results show thatthe present oscillator structureis moreefficient than the conventional uniform beam structure, specifically, for vibration energy harvesting in low-frequency environment. 展开更多
关键词 vibration energy HARVESTING PIEZOELECTRIC CANTILEVER beam Stepped variable thicknesses FINITE ELEMENT method simulation
下载PDF
Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine 被引量:4
10
作者 Guoxin JIN Zhenghao WANG Tianzhi YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第6期813-824,共12页
Human motion induced vibration has very low frequency,ranging from 2 Hz to 5 Hz.Traditional vibration isolators are not effective in low-frequency regions due to the trade-off between the low natural frequency and the... Human motion induced vibration has very low frequency,ranging from 2 Hz to 5 Hz.Traditional vibration isolators are not effective in low-frequency regions due to the trade-off between the low natural frequency and the high load capacity.In this paper,inspired by the human spine,we propose a novel bionic human spine inspired quasi-zero stiffness(QZS)vibration isolator which consists of a cascaded multi-stage negative stiffness structure.The force and stiffness characteristics are investigated first,the dynamic model is established by Newton’s second law,and the isolation performance is analyzed by the harmonic balance method(HBM).Numerical results show that the bionic isolator can obtain better low-frequency isolation performance by increasing the number of negative structure stages,and reducing the damping values and external force values can obtain better low-frequency isolation performance.In comparison with the linear structure and existing traditional QZS isolator,the bionic spine isolator has better vibration isolation performance in low-frequency regions.It paves the way for the design of bionic ultra-low-frequency isolators and shows potential in many engineering applications. 展开更多
关键词 bionic spine inspired vibration isolator harmonic balance method(HBM) quasi-zero stiffness(QZS) ultra-low frequency vibration isolation
下载PDF
INFLUENCE OF UNBALANCE ON LOW-FREQUENCY VIBRATION OF ROTOR-BEARING SYSTEM
11
作者 杨建刚 戴德成 高伟 《Journal of Southeast University(English Edition)》 EI CAS 1995年第1期44-50,共7页
The influence of unbalance on low-frequency vibration exists whenthere are nonlinear factors in oil film force. Based on the Muszpeka oil film mod-el , a theoretical proof is presented. Some new results are obtained ... The influence of unbalance on low-frequency vibration exists whenthere are nonlinear factors in oil film force. Based on the Muszpeka oil film mod-el , a theoretical proof is presented. Some new results are obtained based on the im-proved simulation meth 展开更多
关键词 nonlinear vibration BALANCE rotor journal BEARING / LATERAL vibra-tion
下载PDF
Simulation and experimental investigation of low-frequency vibration reduction of honeycomb phononic crystals
12
作者 Han-Bo Shao Guo-Ping Chen +1 位作者 Huan He Jin-Hui Jiang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期413-419,共7页
The honeycomb phononic crystal displays good performance in reducing vibration, especially at low frequency, but there are few corresponding experiments involving this kind of phononic crystal and the influence of geo... The honeycomb phononic crystal displays good performance in reducing vibration, especially at low frequency, but there are few corresponding experiments involving this kind of phononic crystal and the influence of geometric parameters on the bandgap is unclear. We design a honeycomb phononic crystal, which is assembled by using a chemigum plate and a steel column, calculate the bandgaps of the phononic crystal, and analyze the vibration modes. In the experiment, we attach a same-sized rubber plate and a phononic crystal to a steel plate separately in order to compare their vibration reduction performances. We use 8×8 unit cells as a complete phononic crystal plate to imitate an infinite period structure and choose a string suspension arrangement to support the experiment. The results show that the honeycomb phononic crystal can reduce the vibrating plate magnitude by up to 60 dB in a frequency range of 600 Hz–900 Hz, while the rubber plate can reduce only about 20 dB. In addition, we study the effect of the thickness of plate and the height and the radius of the column in order to choose the most superior parameters to achieve low frequency and wide bandgap. 展开更多
关键词 honeycomb phononic crystal reducing vibration bandgap
下载PDF
Low-frequency vibrational modes of glutamine
13
作者 王卫宁 王果 张岩 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期200-204,共5页
High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experim... High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experimental and the computational results, the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations. Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region. 展开更多
关键词 vibrational modes THz time-domain spectroscopy Raman scattering B3LYP AMINOACID
下载PDF
Three-magnet-ring quasi-zero stiffness isolator for low-frequency vibration isolation
14
作者 Shang Wang Lei Hou +2 位作者 Qingye Meng Gengshuo Cui Xiaodong Wang 《International Journal of Mechanical System Dynamics》 EI 2024年第2期153-170,共18页
A three-magnet-ring quasi-zero stiffness(QZS-TMR)isolator is designed to solve the problem of low-frequency vibration isolation in the vertical direction of precision equipment.QZS-TMR has both positive and negative s... A three-magnet-ring quasi-zero stiffness(QZS-TMR)isolator is designed to solve the problem of low-frequency vibration isolation in the vertical direction of precision equipment.QZS-TMR has both positive and negative stiffness structures.The positive stiffness structure consists of two mutually repelling magnetic rings and the negative stiffness structure consists of two magnetic rings nested within each other.By modulating the relative distance between positive and negative stiffness structures,the isolator can have QZS characteristics.Compared with other QZS isolators,the QZS-TMR is compact and easy to manufacture.In addition,the working load of QZS-TMR can be flexibly adjusted by varying the radial widths of the inner magnetic ring.In this paper,the static analysis of QZS-TMR is carried out to guide the design,and the low-frequency vibration isolation performance is studied.In addition,the experimental prototype of QZS-TMR is designed and manufactured.The static and vibration isolation experiments are carried out on the prototype.The results show that the initial vibration isolation frequency of the experimental prototype is about 4 Hz.The results show an excellent low-frequency vibration isolation effect,which is consistent with the theoretical research.This paper introduces a new approach to the design of the QZS isolator. 展开更多
关键词 low-frequency vibration isolation magnet rings quasi-zero stiffness vibration isolator
原文传递
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
15
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND vibration attenuation low-frequency ultrasound vibration Transmission loss
下载PDF
Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial
16
作者 Xingjian DONG Shuo WANG +5 位作者 Anshuai WANG Liang WANG Zhaozhan ZHANG Yuanhao TIE Qingyu LIN Yongtao SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1841-1856,共16页
The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of... The suppression of low-frequency vibration and noise has always been an important issue in a wide range of engineering applications.To address this concern,a novel square hierarchical honeycomb metamaterial capable of reducing low-frequency noise has been developed.By combining Bloch’s theorem with the finite element method,the band structure is calculated.Numerical results indicate that this metamaterial can produce multiple low-frequency bandgaps within 500 Hz,with a bandgap ratio exceeding 50%.The first bandgap spans from 169.57 Hz to 216.42 Hz.To reveal the formation mechanism of the bandgap,a vibrational mode analysis is performed.Numerical analysis demonstrates that the bandgap is attributed to the suppression of elastic wave propagation by the vibrations of the structure’s two protruding corners and overall expansion vibrations.Additionally,detailed parametric analyses are conducted to investigate the effect ofθ,i.e.,the angle between the protruding corner of the structure and the horizontal direction,on the band structures and the total effective bandgap width.It is found that reducingθis conducive to obtaining lower frequency bandgaps.The propagation characteristics of elastic waves in the structure are explored by the group velocity,phase velocity,and wave propagation direction.Finally,the transmission characteristics of a finite periodic structure are investigated experimentally.The results indicate significant acceleration amplitude attenuation within the bandgap range,confirming the structure’s excellent low-frequency vibration suppression capability. 展开更多
关键词 wave propagation vibration suppression METAMATERIAL low-frequency bandgap
下载PDF
A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures
17
作者 Wei WEI Feng GUAN Xin FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1171-1188,共18页
A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ... A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency. 展开更多
关键词 metamaterial and metastructure vibration isolation bandgap wave insulation PLATE
下载PDF
Low-frequency hybridized excess vibrations of two-dimensional glasses
18
作者 付立存 郑一鸣 王利近 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期550-555,共6页
One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight i... One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties. 展开更多
关键词 density of states vibrational modes sound attenuation two-dimensional glasses
下载PDF
A low-frequency pure metal metamaterial absorber with continuously tunable stiffness
19
作者 Xingzhong WANG Shiteng RUI +2 位作者 Shaokun YANG Weiquan ZHANG Fuyin MA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1209-1224,共16页
To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing ac... To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions. 展开更多
关键词 elastic metamaterial absorber continuously tunable stiffness low-frequency vibration damping variable stiffness design pure metal structure
下载PDF
A human-sensitive frequency band vibration isolator for heavy-duty truck seats
20
作者 Qingqing LIU Shenlong WANG +5 位作者 Ge YAN Hu DING Haihua WANG Qiang SHI Xiaohong DING Huijie YU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1733-1748,共16页
In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven... In this study,a human-sensitive frequency band vibration isolator(HFBVI)with quasi-zero stiffness(QZS)characteristics for heavy-duty truck seats is designed to improve the comfort of heavy-duty truck drivers on uneven roads.First,the analytical expressions for the force and displacement of the HFBVI are derived with the Lagrange equation and d'Alembert's principle,and are validated through the prototype restoring force testing.Second,the harmonic balance method(HBM)is used to obtain the dynamic responses under harmonic excitation,and further the influence of pre-stretching on the dynamic characteristics and transmissibility is discussed.Finally,the experimental prototype of the HFBVI is fabricated,and vibration experiments are conducted under harmonic excitation to verify the vibration isolation performance(VIP)of the proposed vibration isolator.The experimental results indicate that the HFBVI can effectively suppress the frequency band(4-8 Hz)to which the human body is sensitive to vertical vibration.In addition,under real random road spectrum excitation,the HFBVI can achieve low-frequency vibration isolation close to 2 Hz,providing new prospects for ensuring the health of heavy-duty truck drivers. 展开更多
关键词 human-sensitive frequency band quasi-zero stiffness(QZS) heavy-duty truck seat real random road spectrum low-frequency vibration isolation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部