Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimil...Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimilation (SODA) Version 2.02/4 for the period 1958-2007, this paper presents a detailed analysis of the climatological and seasonal ZHA in the tropical Pacific Ocean. Climatologically, ZHA shows a zonal- band spatial pattern associated with equatorial currents and contributes to forming the irregular eastern boundary of the WPWP (EBWP). Seasonal variation of ZHA with a positive peak from February to July is most prominent in the Nifio3.4 region, where the EBWP is located. The physical mechanism of the seasonal cycle in this region is examined. The mean advection of anomalous temperature, anomalous advection of mean temperature and eddy advection account for 31%, 51%, and 18% of the total seasonal variations, respectively. This suggests that seasonal changes of the South Equatorial Current induced by variability of the trade winds are the dominant contributor to the anomalous advection of mean temperature and hence, the seasonality of ZHA. Heat budget analysis shows that ZHA and surface heat flux make comparable contributions to the seasonal heat variation in the Nifio3.4 region, and that ZHA cools the upper ocean throughout the calendar year except in late boreal spring. The connection between ZHA and EBWP is further explored and a statistical relationship between EBWP, ZHA and surface heat flux is established based on least squares fitting.展开更多
A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model ...A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation.展开更多
After its maturity,El Niño usually decays rapidly in the following summer and evolves into a La Niña pattern.However,this was not the case for the 2018/19 El Niño event.Based on multiple reanalysis data...After its maturity,El Niño usually decays rapidly in the following summer and evolves into a La Niña pattern.However,this was not the case for the 2018/19 El Niño event.Based on multiple reanalysis data sets,the space-time evolution and triggering mechanism for the unusual second-year warming in late 2019,after the 2018/19 El Niño event,are investigated in the tropical Pacific.After a short decaying period associated with the 2018/19 El Niño condition,positive sea surface temperature anomalies(SSTAs)re-intensified in the eastern equatorial Pacific in late 2019.Compared with the composite pattern of El Niño in the following year,two key differences are evident in the evolution of SSTAs in 2019.First,is the persistence of the surface warming over the central equatorial Pacific in May,and second,is the re-intensification of the positive SSTAs over the eastern equatorial Pacific in September.Observational results suggest that the re-intensification of anomalous westerly winds over the western and central Pacific,induced remotely by an extreme Indian Ocean Dipole(IOD)event,acted as a triggering mechanism for the second-year warming in late 2019.That is,the IOD-related cold SSTAs in the eastern Indian Ocean established and sustained anomalous surface westerly winds over the western equatorial Pacific,which induced downwelling Kelvin waves propagating eastward along the equator.At the same time,the subsurface ocean provided plenty of warm water in the western and central equatorial Pacific.Mixed-layer heat budget analyses further confirm that positive zonal advection,induced by the anomalous westerly winds,and thermocline feedback played important roles in leading to the second-year warming in late 2019.This study provides new insights into the processes responsible for the diversity of El Niño evolution,which is important for improving the physical understanding and seasonal prediction of El Niño events.展开更多
The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the o...The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the output of 15 models from CMIP5. The models indicate that in the late 21st century the mixed layer will shoal and the MLD reduction will be most pronounced in spring at about 33~N on the southern edge of the present deep-MLD region. The advection of temperature change in the upper 100 m by the mean eastward flow explains the spatial pattern of MLD shoaling in the models. Associated with the shoaling mixed layer, the onset of spring bloom inception is projected to advance due to the strengthened stratification in the warming climate.展开更多
Alaskan Arctic waters have participated in hemispheric-wide Arctic warming over the last two decades at over two times the rate of global warming. During 2008–13, this relative warming occurred only north of the Beri...Alaskan Arctic waters have participated in hemispheric-wide Arctic warming over the last two decades at over two times the rate of global warming. During 2008–13, this relative warming occurred only north of the Bering Strait and the atmospheric Arctic front that forms a north–south thermal barrier. This front separates the southeastern Bering Sea temperatures from Arctic air masses. Model projections show that future temperatures in the Chukchi and Beaufort seas continue to warm at a rate greater than the global rate, reaching a change of +4℃ by 2040 relative to the 1981–2010 mean. Offshore at 74°N, climate models project the open water duration season to increase from a current average of three months to five months by 2040. These rates are occasionally enhanced by midlatitude connections. Beginning in August 2014, additional Arctic warming was initiated due to increased SST anomalies in the North Pacific and associated shifts to southerly winds over Alaska, especially in winter 2015–16. While global warming and equatorial teleconnections are implicated in North Pacific SSTs, the ending of the 2014–16 North Pacific warm event demonstrates the importance of internal, chaotic atmospheric natural variability on weather conditions in any given year. Impacts from global warming on Alaskan Arctic temperature increases and sea-ice and snow loss, with occasional North Pacific support, are projected to continue to propagate through the marine ecosystem in the foreseeable future. The ecological and societal consequences of such changes show a radical departure from the current Arctic environment.展开更多
Based on the data from the Climate Diagnostics Bulletin, Oceanographic Monthly Summary, UH Sea Level Center and TOGA─COARE IOP, the response of warm pool in the tropical western Pacific and the tropical eastern Pacif...Based on the data from the Climate Diagnostics Bulletin, Oceanographic Monthly Summary, UH Sea Level Center and TOGA─COARE IOP, the response of warm pool in the tropical western Pacific and the tropical eastern Pacific SST to the anomalous wind field during 1992/1993 EI Nino has been analyzed. The results show that the eastward transport of warm water of the tropical western Pacific due to the westerly wind burst leads not only to a drop of sea level but also to a raise of thermocline in the tropical western Pacific. Consequently the heat content in upper layer water decreases especially in the thermocline. Contrary to this, the positive anomalies Of heat content and thermocline depth appear in the tropical eastern Pacific. The positive anomalies in the eastern Pacific lag the negative ones in the western Pacific by two months; The anomalous eastward shift of warm pei (28℃isotherm) is a direct response of ocean current to westerly wind anomalies in low-level atmosphere; quantitative calculations show that the thermal advection caused by anomalous ocean current is the main force of anomalous eastward displacement of the warm pool (28℃isotherm) and the one of main causes for anomalous warming of the tropical eastern Pacific.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB417401)the CAS Strategic Priority Research Program(No.XDA10010104)
文摘Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimilation (SODA) Version 2.02/4 for the period 1958-2007, this paper presents a detailed analysis of the climatological and seasonal ZHA in the tropical Pacific Ocean. Climatologically, ZHA shows a zonal- band spatial pattern associated with equatorial currents and contributes to forming the irregular eastern boundary of the WPWP (EBWP). Seasonal variation of ZHA with a positive peak from February to July is most prominent in the Nifio3.4 region, where the EBWP is located. The physical mechanism of the seasonal cycle in this region is examined. The mean advection of anomalous temperature, anomalous advection of mean temperature and eddy advection account for 31%, 51%, and 18% of the total seasonal variations, respectively. This suggests that seasonal changes of the South Equatorial Current induced by variability of the trade winds are the dominant contributor to the anomalous advection of mean temperature and hence, the seasonality of ZHA. Heat budget analysis shows that ZHA and surface heat flux make comparable contributions to the seasonal heat variation in the Nifio3.4 region, and that ZHA cools the upper ocean throughout the calendar year except in late boreal spring. The connection between ZHA and EBWP is further explored and a statistical relationship between EBWP, ZHA and surface heat flux is established based on least squares fitting.
基金This research was funded by the National Natural Science Foundation of China[grant number 41705119]a basic research project[grant number xxx0109-301].
文摘A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation.
基金This work is jointly supported by grants from the National Key Research and Development Program(Grant No.2018YFC1505802)the National Natural Science Foundation of China(Grant Nos.41576029,42030410,41690122(41690120),41420104002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDA19060102,XDB 40000000 and XDB 42000000).
文摘After its maturity,El Niño usually decays rapidly in the following summer and evolves into a La Niña pattern.However,this was not the case for the 2018/19 El Niño event.Based on multiple reanalysis data sets,the space-time evolution and triggering mechanism for the unusual second-year warming in late 2019,after the 2018/19 El Niño event,are investigated in the tropical Pacific.After a short decaying period associated with the 2018/19 El Niño condition,positive sea surface temperature anomalies(SSTAs)re-intensified in the eastern equatorial Pacific in late 2019.Compared with the composite pattern of El Niño in the following year,two key differences are evident in the evolution of SSTAs in 2019.First,is the persistence of the surface warming over the central equatorial Pacific in May,and second,is the re-intensification of the positive SSTAs over the eastern equatorial Pacific in September.Observational results suggest that the re-intensification of anomalous westerly winds over the western and central Pacific,induced remotely by an extreme Indian Ocean Dipole(IOD)event,acted as a triggering mechanism for the second-year warming in late 2019.That is,the IOD-related cold SSTAs in the eastern Indian Ocean established and sustained anomalous surface westerly winds over the western equatorial Pacific,which induced downwelling Kelvin waves propagating eastward along the equator.At the same time,the subsurface ocean provided plenty of warm water in the western and central equatorial Pacific.Mixed-layer heat budget analyses further confirm that positive zonal advection,induced by the anomalous westerly winds,and thermocline feedback played important roles in leading to the second-year warming in late 2019.This study provides new insights into the processes responsible for the diversity of El Niño evolution,which is important for improving the physical understanding and seasonal prediction of El Niño events.
基金supported by the National Basic Research Program of China (Grant No. 2012CB955602)the National Natural Science Foundation of China (Grant Nos. 41476002, 41490643, 41176006 and 41221063)the Fundamental Research Funds for the Central Universities (Grant No. 201503029)
文摘The mixed layer is deep in January-April in the Kuroshio Extension region. This paper investigates the response in this region of mixed layer depth (MLD) and the spring bloom initiation to global warming using the output of 15 models from CMIP5. The models indicate that in the late 21st century the mixed layer will shoal and the MLD reduction will be most pronounced in spring at about 33~N on the southern edge of the present deep-MLD region. The advection of temperature change in the upper 100 m by the mean eastward flow explains the spatial pattern of MLD shoaling in the models. Associated with the shoaling mixed layer, the onset of spring bloom inception is projected to advance due to the strengthened stratification in the warming climate.
基金The work was supported by the NOAA Arctic Research Project of the Climate Program Officepartially funded by the Joint Institute for the Study of the Atmosphere and Ocean(JISAO)under the NOAA Cooperative Agreement NA10OAR4320148,contribution number 2016-01-40.PMEL contribution number:4535
文摘Alaskan Arctic waters have participated in hemispheric-wide Arctic warming over the last two decades at over two times the rate of global warming. During 2008–13, this relative warming occurred only north of the Bering Strait and the atmospheric Arctic front that forms a north–south thermal barrier. This front separates the southeastern Bering Sea temperatures from Arctic air masses. Model projections show that future temperatures in the Chukchi and Beaufort seas continue to warm at a rate greater than the global rate, reaching a change of +4℃ by 2040 relative to the 1981–2010 mean. Offshore at 74°N, climate models project the open water duration season to increase from a current average of three months to five months by 2040. These rates are occasionally enhanced by midlatitude connections. Beginning in August 2014, additional Arctic warming was initiated due to increased SST anomalies in the North Pacific and associated shifts to southerly winds over Alaska, especially in winter 2015–16. While global warming and equatorial teleconnections are implicated in North Pacific SSTs, the ending of the 2014–16 North Pacific warm event demonstrates the importance of internal, chaotic atmospheric natural variability on weather conditions in any given year. Impacts from global warming on Alaskan Arctic temperature increases and sea-ice and snow loss, with occasional North Pacific support, are projected to continue to propagate through the marine ecosystem in the foreseeable future. The ecological and societal consequences of such changes show a radical departure from the current Arctic environment.
文摘Based on the data from the Climate Diagnostics Bulletin, Oceanographic Monthly Summary, UH Sea Level Center and TOGA─COARE IOP, the response of warm pool in the tropical western Pacific and the tropical eastern Pacific SST to the anomalous wind field during 1992/1993 EI Nino has been analyzed. The results show that the eastward transport of warm water of the tropical western Pacific due to the westerly wind burst leads not only to a drop of sea level but also to a raise of thermocline in the tropical western Pacific. Consequently the heat content in upper layer water decreases especially in the thermocline. Contrary to this, the positive anomalies Of heat content and thermocline depth appear in the tropical eastern Pacific. The positive anomalies in the eastern Pacific lag the negative ones in the western Pacific by two months; The anomalous eastward shift of warm pei (28℃isotherm) is a direct response of ocean current to westerly wind anomalies in low-level atmosphere; quantitative calculations show that the thermal advection caused by anomalous ocean current is the main force of anomalous eastward displacement of the warm pool (28℃isotherm) and the one of main causes for anomalous warming of the tropical eastern Pacific.