A systematical study on the relationship between the amounts of different eutectic phases especially the low-melting-point(LMP)eutectics and the hot tearing susceptibility of ternary Al−Cu−Mg alloys during solidificat...A systematical study on the relationship between the amounts of different eutectic phases especially the low-melting-point(LMP)eutectics and the hot tearing susceptibility of ternary Al−Cu−Mg alloys during solidification was performed.By controlling the concentrations of major alloying elements(Cu,Mg),the amounts of LMP eutectics at the final stages of solidification were varied and the corresponding hot tearing susceptibility(HTS)was determined.The results showed that the Al−4.6Cu−0.4Mg(wt.%)alloy,which contained the smallest fraction of LMP eutectics among the investigated alloys,was observed to be the most susceptible to hot tearing.With the amount of total residual liquid being approximately the same in the alloys,the hot tearing resistance is considered to be closely related to the amounts of LMP eutectics.Specifically,the higher the amount of LMP eutectics was,the lower the HTS of the alloy was.Further,the potential mechanism of low HTS for alloys with high amounts of LMP eutectics among ternary Al−Cu−Mg alloys was discussed in terms of feeding ability and permeability as well as total viscosity evolution during solidification.展开更多
Carbon-supported platinum-lanthanum(Pt-Ln)intermetallic compound(IMC)nanoparticles with high activity and robust stability have been demonstrated as promising cathode catalysts for proton-exchange membrane fuel cells....Carbon-supported platinum-lanthanum(Pt-Ln)intermetallic compound(IMC)nanoparticles with high activity and robust stability have been demonstrated as promising cathode catalysts for proton-exchange membrane fuel cells.However,the preparation of Pt-Ln IMC catalysts needs high-temperature annealing treatment that inevitably causes nanoparticle sintering,resulting in significant reduction of the electrochemical surface area and mass-based activity.Here,we prepare small-sized M-doped Pt_(5)Ce(M=Ga,Cd,and Sb)IMCs catalysts via a low-melting-point metal doping strategy.We speculate that the doping of low-melting-point metals can facilitate the generation of vacancies in the crystal lattice through thermal activation and thus reduce the kinetic barriers for the formation of intermetallic Pt_(5)Ce catalysts.The prepared Ga-doped Pt_(5)Ce catalyst exhibits a higher electrochemical active surface area(81 m^(2)·gPt^(-1))and a larger mass activity(0.45 A·mgPt^(-1)at 0.9 V)over the undoped Pt_(5)Ce and commercial Pt/C catalysts.In the membrane electrode assembly test,the Ga-doped Pt_(5)Ce cathode delivers a power density of 0.98 W·cm^(-2)at 0.67 V,along with a voltage loss of only 27 mV at 0.8 A·cm^(-2)at the end of accelerated stability test.展开更多
This study reports an efficient method for growing high-quality boron nitride nanotubes(BNNTs)via chemical vapor deposition of low-melting-point precursors—magnesium diboride(MgB_(2)),magnesium nitride(Mg_(3)N_(2)),a...This study reports an efficient method for growing high-quality boron nitride nanotubes(BNNTs)via chemical vapor deposition of low-melting-point precursors—magnesium diboride(MgB_(2)),magnesium nitride(Mg_(3)N_(2)),and diboron trioxide(B_(2)O)at a growth temperature of 1000–1300℃.The strong oxygen-capturing ability of Mg_(3)N_(2)inhibits the formation of high-melting-point Mg_(3)B_(2)O_(6),which helps MgB_(2)to maintain an efficient and stable catalytic capacity,thereby enhancing its growth efficiency and utilization of the boron source.Moreover,polydimethylsiloxane(PDMS)composites formed from these BNNTs demonstrated much greater thermal conductivities than pure PDMS.Thus,this novel strategy for preparing BNNTs is efficient,and they have great potential for application as thermal interface materials.展开更多
文摘A systematical study on the relationship between the amounts of different eutectic phases especially the low-melting-point(LMP)eutectics and the hot tearing susceptibility of ternary Al−Cu−Mg alloys during solidification was performed.By controlling the concentrations of major alloying elements(Cu,Mg),the amounts of LMP eutectics at the final stages of solidification were varied and the corresponding hot tearing susceptibility(HTS)was determined.The results showed that the Al−4.6Cu−0.4Mg(wt.%)alloy,which contained the smallest fraction of LMP eutectics among the investigated alloys,was observed to be the most susceptible to hot tearing.With the amount of total residual liquid being approximately the same in the alloys,the hot tearing resistance is considered to be closely related to the amounts of LMP eutectics.Specifically,the higher the amount of LMP eutectics was,the lower the HTS of the alloy was.Further,the potential mechanism of low HTS for alloys with high amounts of LMP eutectics among ternary Al−Cu−Mg alloys was discussed in terms of feeding ability and permeability as well as total viscosity evolution during solidification.
基金supported by the National Natural Science Foundation of China(Nos.22065016 and 22071225)the Plan for Anhui Major Provincial Science&Technology Project(Nos.202203a0520013 and 2021d05050006)the fellowship of China Postdoctoral Science Foundation(No.2022M712179).
文摘Carbon-supported platinum-lanthanum(Pt-Ln)intermetallic compound(IMC)nanoparticles with high activity and robust stability have been demonstrated as promising cathode catalysts for proton-exchange membrane fuel cells.However,the preparation of Pt-Ln IMC catalysts needs high-temperature annealing treatment that inevitably causes nanoparticle sintering,resulting in significant reduction of the electrochemical surface area and mass-based activity.Here,we prepare small-sized M-doped Pt_(5)Ce(M=Ga,Cd,and Sb)IMCs catalysts via a low-melting-point metal doping strategy.We speculate that the doping of low-melting-point metals can facilitate the generation of vacancies in the crystal lattice through thermal activation and thus reduce the kinetic barriers for the formation of intermetallic Pt_(5)Ce catalysts.The prepared Ga-doped Pt_(5)Ce catalyst exhibits a higher electrochemical active surface area(81 m^(2)·gPt^(-1))and a larger mass activity(0.45 A·mgPt^(-1)at 0.9 V)over the undoped Pt_(5)Ce and commercial Pt/C catalysts.In the membrane electrode assembly test,the Ga-doped Pt_(5)Ce cathode delivers a power density of 0.98 W·cm^(-2)at 0.67 V,along with a voltage loss of only 27 mV at 0.8 A·cm^(-2)at the end of accelerated stability test.
基金supported by the National Natural Science Foundation of China(No.51972162).
文摘This study reports an efficient method for growing high-quality boron nitride nanotubes(BNNTs)via chemical vapor deposition of low-melting-point precursors—magnesium diboride(MgB_(2)),magnesium nitride(Mg_(3)N_(2)),and diboron trioxide(B_(2)O)at a growth temperature of 1000–1300℃.The strong oxygen-capturing ability of Mg_(3)N_(2)inhibits the formation of high-melting-point Mg_(3)B_(2)O_(6),which helps MgB_(2)to maintain an efficient and stable catalytic capacity,thereby enhancing its growth efficiency and utilization of the boron source.Moreover,polydimethylsiloxane(PDMS)composites formed from these BNNTs demonstrated much greater thermal conductivities than pure PDMS.Thus,this novel strategy for preparing BNNTs is efficient,and they have great potential for application as thermal interface materials.