Four coumarin derivatives(4a-4d) with different alkoxy chains were synthesized. It was found that compound 4d showed a better gelation ability than the other compounds, for example, it could self-assemble into organ...Four coumarin derivatives(4a-4d) with different alkoxy chains were synthesized. It was found that compound 4d showed a better gelation ability than the other compounds, for example, it could self-assemble into organogels in various organic fluids via ultrasound treatment or heating-cooling process, whereas compound 4c could only gel in a few mixed solvents and compounds 4a, 4b could not form organogel. The results from fluorescent and FT-IR spectra indicate that π-π interaction had an effect on the formation of the organogels of compound 4d besides H-bonding and van der Waals interaction, which were the driving forces for the self-assembling of compound 4c in gel state. The gel of compound 4d in toluene could emit strong fluorescence under UV irradiation and the [2+2] cyclo-addition was suggested by ^1H NMR and fluorescence spectroscopy. This light-sensitive organogel might find application in optical materials.展开更多
Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this...Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this problem, herein we synthesized the high-Al-/B-containing(up to 30%(mass)) HED gelled fuels, with low-molecular-mass organic gellant Z, which show high net heat of combustion(NHOC), density, storage stability, and thixotropic properties. The characterizations indicate that the application of energetic particles to the gelled fuels obviously destroys their fibrous network structures but can provide the new particle-gellant gelation microstructures, resulting in the comparable stability between 1.0%(mass) Z/JP-10 + 30%(mass) Al or B and pure JP-10 gelled fuel. Moreover, the gelled fuels with high-content Al or B exhibit high shear-thinning property, recovery capability, and mechanical strength, which are favorable for their storage and utilization. Importantly, the prepared 1.0%(mass) Z/JP-10 + 30%(mass) B(or 1.0%(mass) Z/JP-10 + 30%(mass) Al) shows the density and NHOC 1.27 times(1.30) and 1.43 times(1.21)higher than pure JP-10, respectively. This work provides a facile and valid approach to the manufacturing of HED gelled fuels with high content of energetic particles for gel propellants.展开更多
In the present study,gel formulations of organogels,hydrogels,and oleo-hydrogel(bigels)were evaluated as transdermal drug delivery systems for diltiazem HCL(DH).Organogels were prepared using soya-bean oil(SO)as a sol...In the present study,gel formulations of organogels,hydrogels,and oleo-hydrogel(bigels)were evaluated as transdermal drug delivery systems for diltiazem HCL(DH).Organogels were prepared using soya-bean oil(SO)as a solvent and span 60(Sp 60),cetyl alcohol(CA)or lecithinpluronic(PLO)as organogelators without and with different surfactants(2%w/w)namely span 80(Sp80),tween 20(T20)and tween 80(T80).On the other hand,hydrogels were formulated using Hydroxypropyl-methylcellulose(HPMC)polymer and bigels were prepared by mixing organogels with HPMC hydrogels.The prepared gels were analyzed microscopically,thermally by DTA and for pH,and viscosity.The effect of gelator used,surfactant types and pH of the sink on DH release from cellophane membrane was investigated.In addition,the DH permeability across the rabbit skin was evaluated.Finally,the in vivo performance of various gel formulationswas assessed based on the hypotensive effects of the drug using hypertensive albino male rat models.The microscopical analysis indicated that the solid fibers formed by gelator particles form the backbone of the organogels while bigels appeared as emulsion like.The addition of surfactants showed an increase in organogel viscosity.The thermal analysis of organogels indicated that the drug present in amorphous not in crystalline form.The release studies indicated that DH release from organogels,hydrogels and bigels could be controlled.The included surfactants decreased the DH release and permeation from organogels compared to those without surfactants using either Sp60 or CA.HPMC hydrogel and Bigels showed higher DH release and permeation rates when compared to organogels.The percent DH released in different pH values was in the following descending order:pH5.5>pH1.2>pH6.8>pH7.4.The in vivo antihypertensive activity of DH using different transdermal gels is arranged as following:hydrogels>PLO organogel>bigel>Sp 60 organogel.展开更多
<div style="text-align:justify;"> An organogelator named N-[3-(hydroxy)-4-(dodecyloxy)-benzoyl]-N’ (4’-nitro-benzoyl) hydrazide (D12) was synthesized. It could form stable gels in some of the tested ...<div style="text-align:justify;"> An organogelator named N-[3-(hydroxy)-4-(dodecyloxy)-benzoyl]-N’ (4’-nitro-benzoyl) hydrazide (D12) was synthesized. It could form stable gels in some of the tested organic solvent. SEM images revealed that the molecules self- assembled into fibrous aggregates in the xerogels. The X-ray diffraction analysis showed that the xerogel exhibited a layered structure. FT-IR studies confirmed that intermolecular hydrogen bonding between C=O and N-H groups was the major driving force for gelation of organic solvents. The gel exhibited gel-sol transition and color change upon addition of F<span style="font-size:10px;"><sup>- </sup></span>. An extended conjugated system formed through the phenyl group and a five-membered ring based on intramolecular hydro-gen bonding between the oxygen atom near the deprotonation nitrogen atom and the other NH, which is responsible for the dramatic color change upon addition of <span style="text-align:justify;white-space:normal;">F</span><span style="font-size:10px;text-align:justify;white-space:normal;"><sup>- </sup></span>. </div>展开更多
Herein,we present a facile strategy to prepare versatile aluminum oxide subnanometer nanosheets with oleic acid and stearic acid ligands(OA-Al SNSs and SA-Al SNSs,respectively).The size effect endows subnanosheets wit...Herein,we present a facile strategy to prepare versatile aluminum oxide subnanometer nanosheets with oleic acid and stearic acid ligands(OA-Al SNSs and SA-Al SNSs,respectively).The size effect endows subnanosheets with abundant acting sites,remarkable intermolecular interactions,and unique polymer-like properties,including flexibility,viscoelasticity,and sol-gel transitions,which is quite different from traditional inorganic materials.Consequently,subnanosheets could form freestanding organogels and OA-Al SNSs exhibit satisfying semisolidification of various solvents,making it an intriguing candidate for the safe storage and transportation of solvents.Furthermore,SA-Al SNSs exhibit excellent adhesive properties of high strength on diverse substrates,and it is easy to erase it without any damage,demonstrating the promising prospects in practical applications.展开更多
基金Sypported by National Natural Science Foundation of China(No.20574027)Program for New Century Excellent Talents in University.
文摘Four coumarin derivatives(4a-4d) with different alkoxy chains were synthesized. It was found that compound 4d showed a better gelation ability than the other compounds, for example, it could self-assemble into organogels in various organic fluids via ultrasound treatment or heating-cooling process, whereas compound 4c could only gel in a few mixed solvents and compounds 4a, 4b could not form organogel. The results from fluorescent and FT-IR spectra indicate that π-π interaction had an effect on the formation of the organogels of compound 4d besides H-bonding and van der Waals interaction, which were the driving forces for the self-assembling of compound 4c in gel state. The gel of compound 4d in toluene could emit strong fluorescence under UV irradiation and the [2+2] cyclo-addition was suggested by ^1H NMR and fluorescence spectroscopy. This light-sensitive organogel might find application in optical materials.
基金support from the National Natural Science Foundation of China (22222808, 21978200)the Haihe Laboratory of Sustainable Chemical Transformations for financial support
文摘Energetic nanofluid fuel has caught the attention of the field of aerospace liquid propellant for its high energy density(HED), but it suffers from the inevitable solid-liquid phase separation problem. To resolve this problem, herein we synthesized the high-Al-/B-containing(up to 30%(mass)) HED gelled fuels, with low-molecular-mass organic gellant Z, which show high net heat of combustion(NHOC), density, storage stability, and thixotropic properties. The characterizations indicate that the application of energetic particles to the gelled fuels obviously destroys their fibrous network structures but can provide the new particle-gellant gelation microstructures, resulting in the comparable stability between 1.0%(mass) Z/JP-10 + 30%(mass) Al or B and pure JP-10 gelled fuel. Moreover, the gelled fuels with high-content Al or B exhibit high shear-thinning property, recovery capability, and mechanical strength, which are favorable for their storage and utilization. Importantly, the prepared 1.0%(mass) Z/JP-10 + 30%(mass) B(or 1.0%(mass) Z/JP-10 + 30%(mass) Al) shows the density and NHOC 1.27 times(1.30) and 1.43 times(1.21)higher than pure JP-10, respectively. This work provides a facile and valid approach to the manufacturing of HED gelled fuels with high content of energetic particles for gel propellants.
文摘In the present study,gel formulations of organogels,hydrogels,and oleo-hydrogel(bigels)were evaluated as transdermal drug delivery systems for diltiazem HCL(DH).Organogels were prepared using soya-bean oil(SO)as a solvent and span 60(Sp 60),cetyl alcohol(CA)or lecithinpluronic(PLO)as organogelators without and with different surfactants(2%w/w)namely span 80(Sp80),tween 20(T20)and tween 80(T80).On the other hand,hydrogels were formulated using Hydroxypropyl-methylcellulose(HPMC)polymer and bigels were prepared by mixing organogels with HPMC hydrogels.The prepared gels were analyzed microscopically,thermally by DTA and for pH,and viscosity.The effect of gelator used,surfactant types and pH of the sink on DH release from cellophane membrane was investigated.In addition,the DH permeability across the rabbit skin was evaluated.Finally,the in vivo performance of various gel formulationswas assessed based on the hypotensive effects of the drug using hypertensive albino male rat models.The microscopical analysis indicated that the solid fibers formed by gelator particles form the backbone of the organogels while bigels appeared as emulsion like.The addition of surfactants showed an increase in organogel viscosity.The thermal analysis of organogels indicated that the drug present in amorphous not in crystalline form.The release studies indicated that DH release from organogels,hydrogels and bigels could be controlled.The included surfactants decreased the DH release and permeation from organogels compared to those without surfactants using either Sp60 or CA.HPMC hydrogel and Bigels showed higher DH release and permeation rates when compared to organogels.The percent DH released in different pH values was in the following descending order:pH5.5>pH1.2>pH6.8>pH7.4.The in vivo antihypertensive activity of DH using different transdermal gels is arranged as following:hydrogels>PLO organogel>bigel>Sp 60 organogel.
文摘<div style="text-align:justify;"> An organogelator named N-[3-(hydroxy)-4-(dodecyloxy)-benzoyl]-N’ (4’-nitro-benzoyl) hydrazide (D12) was synthesized. It could form stable gels in some of the tested organic solvent. SEM images revealed that the molecules self- assembled into fibrous aggregates in the xerogels. The X-ray diffraction analysis showed that the xerogel exhibited a layered structure. FT-IR studies confirmed that intermolecular hydrogen bonding between C=O and N-H groups was the major driving force for gelation of organic solvents. The gel exhibited gel-sol transition and color change upon addition of F<span style="font-size:10px;"><sup>- </sup></span>. An extended conjugated system formed through the phenyl group and a five-membered ring based on intramolecular hydro-gen bonding between the oxygen atom near the deprotonation nitrogen atom and the other NH, which is responsible for the dramatic color change upon addition of <span style="text-align:justify;white-space:normal;">F</span><span style="font-size:10px;text-align:justify;white-space:normal;"><sup>- </sup></span>. </div>
基金supported by NSFC(22241502,22035004,and 22250710677).
文摘Herein,we present a facile strategy to prepare versatile aluminum oxide subnanometer nanosheets with oleic acid and stearic acid ligands(OA-Al SNSs and SA-Al SNSs,respectively).The size effect endows subnanosheets with abundant acting sites,remarkable intermolecular interactions,and unique polymer-like properties,including flexibility,viscoelasticity,and sol-gel transitions,which is quite different from traditional inorganic materials.Consequently,subnanosheets could form freestanding organogels and OA-Al SNSs exhibit satisfying semisolidification of various solvents,making it an intriguing candidate for the safe storage and transportation of solvents.Furthermore,SA-Al SNSs exhibit excellent adhesive properties of high strength on diverse substrates,and it is easy to erase it without any damage,demonstrating the promising prospects in practical applications.