This paper establishes an evaluation model of the customer satisfaction index for the wellhead blowout preventers of China's petroleum industry based on evaluation models of the customer satisfaction index at home an...This paper establishes an evaluation model of the customer satisfaction index for the wellhead blowout preventers of China's petroleum industry based on evaluation models of the customer satisfaction index at home and aboard, and by considering the consuming situation in China and the features of the China's petroleum industry. For the existence of: (1) multiple correlations among the factors in the model; (2) the variables need to be explained, but that are hard to observe; (3) the customer satisfaction degree of observation variables appears the shape of skewness or two or three peaks, the correlations between the satisfaction index and its factors cannot be described by common multiple regression. This paper uses a partial least squares (PLS) method based on principal components and typical correlative analysis to solve the problem. When PLS is used in the model of the customer satisfaction index of the wellhead blowout preventers, the latent variables and the explanation degree coefficient of the manifest variable to the corresponding latent variables are estimated by PLS path analysis, and the influencing coefficient among the latent variables in the model is estimated by PLS regression analysis. PLS is also be used to calculate and analyze the model and disclose the correlations among the structural variables as well as the correlation between structural variables and its corresponding observation variables, evaluating results of which provide useful information for petroleum industry to improve the product quality and to the enhancement of the customer satisfaction to the product.展开更多
文摘This paper establishes an evaluation model of the customer satisfaction index for the wellhead blowout preventers of China's petroleum industry based on evaluation models of the customer satisfaction index at home and aboard, and by considering the consuming situation in China and the features of the China's petroleum industry. For the existence of: (1) multiple correlations among the factors in the model; (2) the variables need to be explained, but that are hard to observe; (3) the customer satisfaction degree of observation variables appears the shape of skewness or two or three peaks, the correlations between the satisfaction index and its factors cannot be described by common multiple regression. This paper uses a partial least squares (PLS) method based on principal components and typical correlative analysis to solve the problem. When PLS is used in the model of the customer satisfaction index of the wellhead blowout preventers, the latent variables and the explanation degree coefficient of the manifest variable to the corresponding latent variables are estimated by PLS path analysis, and the influencing coefficient among the latent variables in the model is estimated by PLS regression analysis. PLS is also be used to calculate and analyze the model and disclose the correlations among the structural variables as well as the correlation between structural variables and its corresponding observation variables, evaluating results of which provide useful information for petroleum industry to improve the product quality and to the enhancement of the customer satisfaction to the product.