Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif...Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.展开更多
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal...Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.展开更多
Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsi...Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.展开更多
Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed...Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.展开更多
The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can b...The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm.展开更多
At present, although the human speech separation has achieved fruitful results, it is not ideal for the separation of singing and accompaniment. Based on low-rank and sparse optimization theory, in this paper, we prop...At present, although the human speech separation has achieved fruitful results, it is not ideal for the separation of singing and accompaniment. Based on low-rank and sparse optimization theory, in this paper, we propose a new singing voice separation algorithm called Low-rank, Sparse Representation with pre-learned dictionaries and side Information (LSRi). The algorithm incorporates both the vocal and instrumental spectrograms as sparse matrix and low-rank matrix, meanwhile combines pre-learning dictionary and the reconstructed voice spectrogram form the annotation. Evaluations on the iKala dataset show that the proposed methods are effective and efficient for singing voice separation.展开更多
Indoor environment quality(IEQ)is one of the most concerned building performances during the operation stage.The non-uniform spatial distribution of various IEQ parameters in large-scale public buildings has been demo...Indoor environment quality(IEQ)is one of the most concerned building performances during the operation stage.The non-uniform spatial distribution of various IEQ parameters in large-scale public buildings has been demonstrated to be an essential factor affecting occupant comfort and building energy consumption.Currently,IEQ sensors have been widely employed in buildings to monitor thermal,visual,acoustic and air quality.However,there is a lack of effective methods for exploring the typical spatial distribution of indoor environmental quality parameters,which is crucial for assessing and controlling non-uniform indoor environments.In this study,a novel clustering method for extracting IEQ spatial distribution patterns is proposed.Firstly,representation vectors reflecting IEQ distributions in the concerned space are generated based on the low-rank sparse representation.Secondly,a multi-step clustering method,which addressed the problems of the“curse of dimensionality”,is designed to obtain typical IEQ distribution patterns of the entire indoor space.The proposed method was applied to the analysis of indoor thermal environment in Beijing Daxing international airport terminal.As a result,four typical temperature spatial distribution patterns of the terminal were extracted from a four-month monitoring,which had been validated for their good representativeness.These typical patterns revealed typical environmental issues in the terminal,such as long-term localized overheating and temperature increases due to a sudden influx of people.The extracted typical IEQ spatial distribution patterns could assist building operators in effectively assessing the uneven distribution of IEQ space under current environmental conditions,facilitating targeted environmental improvements,optimization of thermal comfort levels,and application of energy-saving measures.展开更多
The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation infor...The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation information hidden in the data,the classification result will be improved significantly.To this end,in this paper,a novel weighted supervised spare coding method is proposed to address the image classification problem.The proposed method firstly explores the structural information sufficiently hidden in the data based on the low rank representation.And then,it introduced the extracted structural information to a novel weighted sparse representation model to code the samples in a supervised way.Experimental results show that the proposed method is superiority to many conventional image classification methods.展开更多
This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation p...This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.展开更多
The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlocal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NCSSC...The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlocal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NCSSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image restoration methods.展开更多
This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage ...This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage the sparsity and nuclear norm to favor the low-rank property.For the proposed estimator,we then prove that with high probability,the Frobenius norm of the estimation rate can be of order O(√((slgg p)/n))under a mild case,where s and p denote the number of nonzero entries and the dimension of the population covariance,respectively and n notes the sample capacity.Finally,an efficient alternating direction method of multipliers with global convergence is proposed to tackle this problem,and merits of the approach are also illustrated by practicing numerical simulations.展开更多
This paper is concerned with the structured simultaneous low-rank and sparse recovery,which can be formulated as the rank and zero-norm regularized least squares problem with a hard constraint diag(■)=0.For this clas...This paper is concerned with the structured simultaneous low-rank and sparse recovery,which can be formulated as the rank and zero-norm regularized least squares problem with a hard constraint diag(■)=0.For this class of NP-hard problems,we propose a convex relaxation algorithm by applying the accelerated proximal gradient method to a convex relaxation model,which is yielded by the smoothed nuclear norm and the weighted l1-norm regularized least squares problem.A theoretical guarantee is provided by establishing the error bounds of the iterates to the true solution under mild restricted strong convexity conditions.To the best of our knowledge,this work is the first one to characterize the error bound of the iterates of the algorithm to the true solution.Finally,numerical results are reported for some random test problems and synthetic data in subspace clustering to verify the efficiency of the proposed convex relaxation algorithm.展开更多
传统的概率矩阵分解在推荐算法中取得了一定的效果,但是仍然面临数据稀疏性问题,并且对数据的利用效率不高,不能根据已有数据准确计算用户(物品)之间的关系,评分预测准确性仍然有待提高.本文利用用户对物品的评分序列信息充分挖掘用户(...传统的概率矩阵分解在推荐算法中取得了一定的效果,但是仍然面临数据稀疏性问题,并且对数据的利用效率不高,不能根据已有数据准确计算用户(物品)之间的关系,评分预测准确性仍然有待提高.本文利用用户对物品的评分序列信息充分挖掘用户(物品)之间的相似度关系,提出了基于用户行为序列的概率矩阵分解推荐算法UBS-PMF(Probability Matrix Factorization Recommendation Algorithm Based on User Behavior Sequence).首先根据用户对物品的评分序列和物品标签信息计算用户对标签的评分序列,即为用户的偏好转移序列,根据该序列可以计算出用户之间的相似度矩阵,同时,用户对物品的评分序列也隐藏着物品之间的关系,利用多个用户对物品的评分序列可以得到物品相似度矩阵,将所得用户(物品)相似度矩阵融入概率矩阵分解模型中进行评分预测,Movielens数据集中的实验表明该算法具有显著的效果,在评分预测准确性方面优于传统的推荐算法.展开更多
文摘Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.
文摘Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.
基金supported by the National Natural Science Foundation of China(6177202062202433+4 种基金621723716227242262036010)the Natural Science Foundation of Henan Province(22100002)the Postdoctoral Research Grant in Henan Province(202103111)。
文摘Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly.
基金National Natural Foundation of China(No.41971279)Fundamental Research Funds of the Central Universities(No.B200202012)。
文摘Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.
基金supported by the National Natural Science Foundation of China(No.61271014)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20124301110003)the Graduated Students Innovation Fund of Hunan Province(No.CX2012B238)
文摘The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm.
文摘At present, although the human speech separation has achieved fruitful results, it is not ideal for the separation of singing and accompaniment. Based on low-rank and sparse optimization theory, in this paper, we propose a new singing voice separation algorithm called Low-rank, Sparse Representation with pre-learned dictionaries and side Information (LSRi). The algorithm incorporates both the vocal and instrumental spectrograms as sparse matrix and low-rank matrix, meanwhile combines pre-learning dictionary and the reconstructed voice spectrogram form the annotation. Evaluations on the iKala dataset show that the proposed methods are effective and efficient for singing voice separation.
基金the China National Key Research and Development Program(Grant No.2022YFC3801300)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.52208113)+1 种基金the Key Program of National Natural Science Foundation of China(Grant No.52130803)the Hang Lung Center for Real Estate,Tsinghua University.The authors also express special thanks to the Command Center of Beijing Daxing International Airport for their long-term and strong support to this research.
文摘Indoor environment quality(IEQ)is one of the most concerned building performances during the operation stage.The non-uniform spatial distribution of various IEQ parameters in large-scale public buildings has been demonstrated to be an essential factor affecting occupant comfort and building energy consumption.Currently,IEQ sensors have been widely employed in buildings to monitor thermal,visual,acoustic and air quality.However,there is a lack of effective methods for exploring the typical spatial distribution of indoor environmental quality parameters,which is crucial for assessing and controlling non-uniform indoor environments.In this study,a novel clustering method for extracting IEQ spatial distribution patterns is proposed.Firstly,representation vectors reflecting IEQ distributions in the concerned space are generated based on the low-rank sparse representation.Secondly,a multi-step clustering method,which addressed the problems of the“curse of dimensionality”,is designed to obtain typical IEQ distribution patterns of the entire indoor space.The proposed method was applied to the analysis of indoor thermal environment in Beijing Daxing international airport terminal.As a result,four typical temperature spatial distribution patterns of the terminal were extracted from a four-month monitoring,which had been validated for their good representativeness.These typical patterns revealed typical environmental issues in the terminal,such as long-term localized overheating and temperature increases due to a sudden influx of people.The extracted typical IEQ spatial distribution patterns could assist building operators in effectively assessing the uneven distribution of IEQ space under current environmental conditions,facilitating targeted environmental improvements,optimization of thermal comfort levels,and application of energy-saving measures.
基金This research is funded by the National Natural Science Foundation of China(61771154).
文摘The conventional sparse representation-based image classification usually codes the samples independently,which will ignore the correlation information existed in the data.Hence,if we can explore the correlation information hidden in the data,the classification result will be improved significantly.To this end,in this paper,a novel weighted supervised spare coding method is proposed to address the image classification problem.The proposed method firstly explores the structural information sufficiently hidden in the data based on the low rank representation.And then,it introduced the extracted structural information to a novel weighted sparse representation model to code the samples in a supervised way.Experimental results show that the proposed method is superiority to many conventional image classification methods.
基金supported by the National Natural Science Foundation of China(11871109)NSAF(U1830107)the Science Challenge Project(TZ2018001)
文摘This paper considers approximately sparse signal and low-rank matrix’s recovery via truncated norm minimization minx∥xT∥q and minX∥XT∥Sq from noisy measurements.We first introduce truncated sparse approximation property,a more general robust null space property,and establish the stable recovery of signals and matrices under the truncated sparse approximation property.We also explore the relationship between the restricted isometry property and truncated sparse approximation property.And we also prove that if a measurement matrix A or linear map A satisfies truncated sparse approximation property of order k,then the first inequality in restricted isometry property of order k and of order 2k can hold for certain different constantsδk andδ2k,respectively.Last,we show that ifδs(k+|T^c|)<√(s-1)/s for some s≥4/3,then measurement matrix A and linear map A satisfy truncated sparse approximation property of order k.It should be pointed out that when Tc=Ф,our conclusion implies that sparse approximation property of order k is weaker than restricted isometry property of order sk.
基金Supported by the National Natural Science Foundation of China(No.61379014)
文摘The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlocal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NCSSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image restoration methods.
基金The work was supported in part by the National Natural Science Foundation of China(Nos.11431002,11171018,71271021,11301022).
文摘This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage the sparsity and nuclear norm to favor the low-rank property.For the proposed estimator,we then prove that with high probability,the Frobenius norm of the estimation rate can be of order O(√((slgg p)/n))under a mild case,where s and p denote the number of nonzero entries and the dimension of the population covariance,respectively and n notes the sample capacity.Finally,an efficient alternating direction method of multipliers with global convergence is proposed to tackle this problem,and merits of the approach are also illustrated by practicing numerical simulations.
基金This work is supported by the National Natural Science Foundation of China(Nos.61402182 and 61273295).
文摘This paper is concerned with the structured simultaneous low-rank and sparse recovery,which can be formulated as the rank and zero-norm regularized least squares problem with a hard constraint diag(■)=0.For this class of NP-hard problems,we propose a convex relaxation algorithm by applying the accelerated proximal gradient method to a convex relaxation model,which is yielded by the smoothed nuclear norm and the weighted l1-norm regularized least squares problem.A theoretical guarantee is provided by establishing the error bounds of the iterates to the true solution under mild restricted strong convexity conditions.To the best of our knowledge,this work is the first one to characterize the error bound of the iterates of the algorithm to the true solution.Finally,numerical results are reported for some random test problems and synthetic data in subspace clustering to verify the efficiency of the proposed convex relaxation algorithm.
文摘传统的概率矩阵分解在推荐算法中取得了一定的效果,但是仍然面临数据稀疏性问题,并且对数据的利用效率不高,不能根据已有数据准确计算用户(物品)之间的关系,评分预测准确性仍然有待提高.本文利用用户对物品的评分序列信息充分挖掘用户(物品)之间的相似度关系,提出了基于用户行为序列的概率矩阵分解推荐算法UBS-PMF(Probability Matrix Factorization Recommendation Algorithm Based on User Behavior Sequence).首先根据用户对物品的评分序列和物品标签信息计算用户对标签的评分序列,即为用户的偏好转移序列,根据该序列可以计算出用户之间的相似度矩阵,同时,用户对物品的评分序列也隐藏着物品之间的关系,利用多个用户对物品的评分序列可以得到物品相似度矩阵,将所得用户(物品)相似度矩阵融入概率矩阵分解模型中进行评分预测,Movielens数据集中的实验表明该算法具有显著的效果,在评分预测准确性方面优于传统的推荐算法.