A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can b...The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm.展开更多
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov...Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods.展开更多
Low-rank matrix decomposition with first-order total variation(TV)regularization exhibits excellent performance in exploration of image structure.Taking advantage of its excellent performance in image denoising,we app...Low-rank matrix decomposition with first-order total variation(TV)regularization exhibits excellent performance in exploration of image structure.Taking advantage of its excellent performance in image denoising,we apply it to improve the robustness of deep neural networks.However,although TV regularization can improve the robustness of the model,it reduces the accuracy of normal samples due to its over-smoothing.In our work,we develop a new low-rank matrix recovery model,called LRTGV,which incorporates total generalized variation(TGV)regularization into the reweighted low-rank matrix recovery model.In the proposed model,TGV is used to better reconstruct texture information without over-smoothing.The reweighted nuclear norm and Li-norm can enhance the global structure information.Thus,the proposed LRTGV can destroy the structure of adversarial noise while re-enhancing the global structure and local texture of the image.To solve the challenging optimal model issue,we propose an algorithm based on the alternating direction method of multipliers.Experimental results show that the proposed algorithm has a certain defense capability against black-box attacks,and outperforms state-of-the-art low-rank matrix recovery methods in image restoration.展开更多
As a kind of weaker supervisory information, pairwise constraints can be exploited to guide the data analysis process, such as data clustering. This paper formulates pairwise constraint propagation, which aims to pred...As a kind of weaker supervisory information, pairwise constraints can be exploited to guide the data analysis process, such as data clustering. This paper formulates pairwise constraint propagation, which aims to predict the large quantity of unknown constraints from scarce known constraints, as a low-rank matrix recovery(LMR) problem. Although recent advances in transductive learning based on matrix completion can be directly adopted to solve this problem, our work intends to develop a more general low-rank matrix recovery solution for pairwise constraint propagation, which not only completes the unknown entries in the constraint matrix but also removes the noise from the data matrix. The problem can be effectively solved using an augmented Lagrange multiplier method. Experimental results on constrained clustering tasks based on the propagated pairwise constraints have shown that our method can obtain more stable results than state-of-the-art algorithms,and outperform them.展开更多
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal...Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.展开更多
In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by ad...In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.展开更多
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ...The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.展开更多
This paper studies the problem of recovering low-rank tensors, and the tensors are corrupted by both impulse and Gaussian noise. The problem is well accomplished by integrating the tensor nuclear norm and the l1-norm ...This paper studies the problem of recovering low-rank tensors, and the tensors are corrupted by both impulse and Gaussian noise. The problem is well accomplished by integrating the tensor nuclear norm and the l1-norm in a unified convex relaxation framework. The nuclear norm is adopted to explore the low-rank components and the l1-norm is used to exploit the impulse noise. Then, this optimization problem is solved by some augmented-Lagrangian-based algorithms. Some preliminary numerical experiments verify that the proposed method can well recover the corrupted low-rank tensors.展开更多
Traumatic painful neuroma is an intractable clinical disease characterized by improper extracellular matrix(ECM)deposition around the injury site.Studies have shown that the microstructure of natural nerves provides a...Traumatic painful neuroma is an intractable clinical disease characterized by improper extracellular matrix(ECM)deposition around the injury site.Studies have shown that the microstructure of natural nerves provides a suitable microenvironment for the nerve end to avoid abnormal hyperplasia and neuroma formation.In this study,we used a decellularized nerve matrix scaffold(DNM-S)to prevent against the formation of painful neuroma after sciatic nerve transection in rats.Our results showed that the DNM-S effectively reduced abnormal deposition of ECM,guided the regeneration and orderly arrangement of axon,and decreased the density of regenerated axons.The epineurium-perilemma barrier prevented the invasion of vascular muscular scar tissue,greatly reduced the invasion ofα-smooth muscle actin-positive myofibroblasts into nerve stumps,effectively inhibited scar formation,which guided nerve stumps to gradually transform into a benign tissue and reduced pain and autotomy behaviors in animals.These findings suggest that DNM-S-optimized neuroma microenvironment by ECM remodeling may be a promising strategy to prevent painful traumatic neuromas.展开更多
At present,there are no resto rative therapies in the clinic for spinal cord injury,with current treatments offering only palliative treatment options.The role of matrix metalloproteases is well established in spinal ...At present,there are no resto rative therapies in the clinic for spinal cord injury,with current treatments offering only palliative treatment options.The role of matrix metalloproteases is well established in spinal cord injury,howeve r,translation into the clinical space was plagued by early designs of matrix metalloprotease inhibitors that lacked specificity and fears of musculos keletal syndrome prevented their further development.Newe r,much more specific matrix metalloprotease inhibitors have revived the possibility of using these inhibitors in the clinic since they are much more specific to their to rget matrix metalloproteases.Here,the evidence for use of matrix metalloproteases after spinal cord injury is reviewed and researche rs are urged to overcome their old fears rega rding matrix metalloprotease inhibition and possible side effects for the field to progress.Recently published work by us shows that inhibition of specific matrix metalloproteases after spinal cord injury holds promise since four key consequences of spinal cord injury could be alleviated by specific,next-gene ration matrix metalloprotease inhibitors.For example,specific inhibition of matrix metalloprotease-9 and matrix metalloprotease-12 within 24 hours after injury and for 3 days,alleviates spinal cord injury-induced edema,blood-s pinal co rd barrier breakdown,neuro pathic pain and resto res sensory and locomotor function.Attempts are now underway to translate this therapy into the clinic.展开更多
为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降...为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降低了重构矩阵的复杂度。考虑到多通道不一致性对重构矩阵的影响,引入0位校正算法,提高了重构方法的稳健性。最后应用重构后的协方差矩阵进行子空间类波达方向估计(direction of arrival,DOA)。实验仿真证明,该特殊重构矩阵在实数化下与原矩阵重构能力相同;当快拍数为100、信噪比为0 dB时,双信源分辨力较重构前由74%提高到95%以上;理论重构运算复杂度降低到原来的53.99%。展开更多
Due to the fine-grained communication scenarios characterization and stability,Wi-Fi channel state information(CSI)has been increasingly applied to indoor sensing tasks recently.Although spatial variations are explici...Due to the fine-grained communication scenarios characterization and stability,Wi-Fi channel state information(CSI)has been increasingly applied to indoor sensing tasks recently.Although spatial variations are explicitlyreflected in CSI measurements,the representation differences caused by small contextual changes are easilysubmerged in the fluctuations of multipath effects,especially in device-free Wi-Fi sensing.Most existing datasolutions cannot fully exploit the temporal,spatial,and frequency information carried by CSI,which results ininsufficient sensing resolution for indoor scenario changes.As a result,the well-liked machine learning(ML)-based CSI sensing models still struggling with stable performance.This paper formulates a time-frequency matrixon the premise of demonstrating that the CSI has low-rank potential and then proposes a distributed factorizationalgorithm to effectively separate the stable structured information and context fluctuations in the CSI matrix.Finally,a multidimensional tensor is generated by combining the time-frequency gradients of CSI,which containsrich and fine-grained real-time contextual information.Extensive evaluations and case studies highlight thesuperiority of the proposal.展开更多
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)中至关重要的一项技术是信道估计,本文提出一种基于矩阵恢复的OFDM信道估计方法,将连续多个OFDM信号的频域信道构造成一个信道矩阵,由于这个信道矩阵是低秩的,所以可以...正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)中至关重要的一项技术是信道估计,本文提出一种基于矩阵恢复的OFDM信道估计方法,将连续多个OFDM信号的频域信道构造成一个信道矩阵,由于这个信道矩阵是低秩的,所以可以将信道估计问题转换为信道矩阵的加权截断核范数最小化问题,并使用改进的奇异值阈值(Singular Value Thresholding,SVT)算法对信道矩阵进行恢复。仿真结果表明,本文提出的方法和传统信道估计算法相比,使用相同导频数可以获得更高的估计精度,在获得相同估计精度时,消耗导频数更少。与基于压缩感知的信道估计方法相比,本文方法消耗相同数量的导频,但可直接获得高精度的OFDM信道的频域估计。展开更多
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
基金supported by the National Natural Science Foundation of China(No.61271014)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20124301110003)the Graduated Students Innovation Fund of Hunan Province(No.CX2012B238)
文摘The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm.
基金Projects(61173122,61262032) supported by the National Natural Science Foundation of ChinaProjects(11JJ3067,12JJ2038) supported by the Natural Science Foundation of Hunan Province,China
文摘Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods.
基金supported by the National Natural Science Foundation of China (No. 91320201 and No. 61471262)the International (Regional) Collaborative Key Research Projects (No. 61520106002)
基金Project supported by the National Natural Science Foundation of China(No.62072024)the Outstanding Youth Program of Beijing University of Civil Engineering and Architecture,China(No.JDJQ20220805)the Shenzhen Stability Support General Project(Type A),China(No.20200826104014001)。
文摘Low-rank matrix decomposition with first-order total variation(TV)regularization exhibits excellent performance in exploration of image structure.Taking advantage of its excellent performance in image denoising,we apply it to improve the robustness of deep neural networks.However,although TV regularization can improve the robustness of the model,it reduces the accuracy of normal samples due to its over-smoothing.In our work,we develop a new low-rank matrix recovery model,called LRTGV,which incorporates total generalized variation(TGV)regularization into the reweighted low-rank matrix recovery model.In the proposed model,TGV is used to better reconstruct texture information without over-smoothing.The reweighted nuclear norm and Li-norm can enhance the global structure information.Thus,the proposed LRTGV can destroy the structure of adversarial noise while re-enhancing the global structure and local texture of the image.To solve the challenging optimal model issue,we propose an algorithm based on the alternating direction method of multipliers.Experimental results show that the proposed algorithm has a certain defense capability against black-box attacks,and outperforms state-of-the-art low-rank matrix recovery methods in image restoration.
基金supported by the National Natural Science Foundation of China (No. 61300164)
文摘As a kind of weaker supervisory information, pairwise constraints can be exploited to guide the data analysis process, such as data clustering. This paper formulates pairwise constraint propagation, which aims to predict the large quantity of unknown constraints from scarce known constraints, as a low-rank matrix recovery(LMR) problem. Although recent advances in transductive learning based on matrix completion can be directly adopted to solve this problem, our work intends to develop a more general low-rank matrix recovery solution for pairwise constraint propagation, which not only completes the unknown entries in the constraint matrix but also removes the noise from the data matrix. The problem can be effectively solved using an augmented Lagrange multiplier method. Experimental results on constrained clustering tasks based on the propagated pairwise constraints have shown that our method can obtain more stable results than state-of-the-art algorithms,and outperform them.
文摘Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.
基金Supported by National Natural Science Foundation of China (No.51275348)College Students Innovation and Entrepreneurship Training Program of Tianjin University (No.201210056339)
文摘In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.
基金Supported by the National Natural Science Foundation of China(Grant No.11971149,11871381)Natural Science Foundation of Henan Province for Youth(Grant No.202300410146)。
文摘The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.
文摘This paper studies the problem of recovering low-rank tensors, and the tensors are corrupted by both impulse and Gaussian noise. The problem is well accomplished by integrating the tensor nuclear norm and the l1-norm in a unified convex relaxation framework. The nuclear norm is adopted to explore the low-rank components and the l1-norm is used to exploit the impulse noise. Then, this optimization problem is solved by some augmented-Lagrangian-based algorithms. Some preliminary numerical experiments verify that the proposed method can well recover the corrupted low-rank tensors.
基金supported by the National Natural Science Foundation of China,No.82171650(to CBZ)Guangdong Province Key Research and Development Project,No.2020B1111150003(to DPQ)Guangdong Basic and Applied Basic Research Foundation,No.2020A1515011143(to CBZ)。
文摘Traumatic painful neuroma is an intractable clinical disease characterized by improper extracellular matrix(ECM)deposition around the injury site.Studies have shown that the microstructure of natural nerves provides a suitable microenvironment for the nerve end to avoid abnormal hyperplasia and neuroma formation.In this study,we used a decellularized nerve matrix scaffold(DNM-S)to prevent against the formation of painful neuroma after sciatic nerve transection in rats.Our results showed that the DNM-S effectively reduced abnormal deposition of ECM,guided the regeneration and orderly arrangement of axon,and decreased the density of regenerated axons.The epineurium-perilemma barrier prevented the invasion of vascular muscular scar tissue,greatly reduced the invasion ofα-smooth muscle actin-positive myofibroblasts into nerve stumps,effectively inhibited scar formation,which guided nerve stumps to gradually transform into a benign tissue and reduced pain and autotomy behaviors in animals.These findings suggest that DNM-S-optimized neuroma microenvironment by ECM remodeling may be a promising strategy to prevent painful traumatic neuromas.
文摘At present,there are no resto rative therapies in the clinic for spinal cord injury,with current treatments offering only palliative treatment options.The role of matrix metalloproteases is well established in spinal cord injury,howeve r,translation into the clinical space was plagued by early designs of matrix metalloprotease inhibitors that lacked specificity and fears of musculos keletal syndrome prevented their further development.Newe r,much more specific matrix metalloprotease inhibitors have revived the possibility of using these inhibitors in the clinic since they are much more specific to their to rget matrix metalloproteases.Here,the evidence for use of matrix metalloproteases after spinal cord injury is reviewed and researche rs are urged to overcome their old fears rega rding matrix metalloprotease inhibition and possible side effects for the field to progress.Recently published work by us shows that inhibition of specific matrix metalloproteases after spinal cord injury holds promise since four key consequences of spinal cord injury could be alleviated by specific,next-gene ration matrix metalloprotease inhibitors.For example,specific inhibition of matrix metalloprotease-9 and matrix metalloprotease-12 within 24 hours after injury and for 3 days,alleviates spinal cord injury-induced edema,blood-s pinal co rd barrier breakdown,neuro pathic pain and resto res sensory and locomotor function.Attempts are now underway to translate this therapy into the clinic.
文摘为了减小低快拍数和低信噪比下采样协方差矩阵误差,并降低其运算复杂度,提出了一种基于实数化的均匀圆阵采样协方差矩阵重构方法。针对均匀圆阵的特点,通过组建特殊的基向量,构成特殊的重构矩阵。通过将采样协方差矩阵实数化,进一步降低了重构矩阵的复杂度。考虑到多通道不一致性对重构矩阵的影响,引入0位校正算法,提高了重构方法的稳健性。最后应用重构后的协方差矩阵进行子空间类波达方向估计(direction of arrival,DOA)。实验仿真证明,该特殊重构矩阵在实数化下与原矩阵重构能力相同;当快拍数为100、信噪比为0 dB时,双信源分辨力较重构前由74%提高到95%以上;理论重构运算复杂度降低到原来的53.99%。
基金the National Natural Science Foundation of China under Grant 61771258 and Grant U1804142the Key Science and Technology Project of Henan Province under Grants 202102210280,212102210159,222102210192,232102210051the Key Scientific Research Projects of Colleges and Universities in Henan Province under Grant 20B460008.
文摘Due to the fine-grained communication scenarios characterization and stability,Wi-Fi channel state information(CSI)has been increasingly applied to indoor sensing tasks recently.Although spatial variations are explicitlyreflected in CSI measurements,the representation differences caused by small contextual changes are easilysubmerged in the fluctuations of multipath effects,especially in device-free Wi-Fi sensing.Most existing datasolutions cannot fully exploit the temporal,spatial,and frequency information carried by CSI,which results ininsufficient sensing resolution for indoor scenario changes.As a result,the well-liked machine learning(ML)-based CSI sensing models still struggling with stable performance.This paper formulates a time-frequency matrixon the premise of demonstrating that the CSI has low-rank potential and then proposes a distributed factorizationalgorithm to effectively separate the stable structured information and context fluctuations in the CSI matrix.Finally,a multidimensional tensor is generated by combining the time-frequency gradients of CSI,which containsrich and fine-grained real-time contextual information.Extensive evaluations and case studies highlight thesuperiority of the proposal.
文摘正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)中至关重要的一项技术是信道估计,本文提出一种基于矩阵恢复的OFDM信道估计方法,将连续多个OFDM信号的频域信道构造成一个信道矩阵,由于这个信道矩阵是低秩的,所以可以将信道估计问题转换为信道矩阵的加权截断核范数最小化问题,并使用改进的奇异值阈值(Singular Value Thresholding,SVT)算法对信道矩阵进行恢复。仿真结果表明,本文提出的方法和传统信道估计算法相比,使用相同导频数可以获得更高的估计精度,在获得相同估计精度时,消耗导频数更少。与基于压缩感知的信道估计方法相比,本文方法消耗相同数量的导频,但可直接获得高精度的OFDM信道的频域估计。