The rapid development of intelligent technology has led to its introduction into the field of electrical lighting in buildings.It provides more technical support for system design,use,and management,and creates a comf...The rapid development of intelligent technology has led to its introduction into the field of electrical lighting in buildings.It provides more technical support for system design,use,and management,and creates a comfortable and safe living environment.The adoption of intelligent technology enables the creation of an intelligent management system,where controllers and sensors are used to adjust the light source within the building,monitor and manage the lighting system in real time,monitor the energy consumption and safety of the system,and achieve the goal of energy saving and emission reduction.This paper briefly discusses the application and significance of intelligent technology in electrical lighting and puts forward design ideas to optimize electrical lighting and measures for lighting system management.展开更多
A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cuttin...A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.展开更多
In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the deci...In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the decision making process. Minimizing the cost of construction without compromising on the architectural and structural requirements is the primary objective of the residential buildings of stake-holders, especially the owners. The choice of structural system and the materials used for construction play a crucial role in this effort. This means that the use of expensive and/or voluminous materials such as cement, steel, masonry etc. is optimized. This could lead to significant reduction in embodied energy as well, if the choice of the structural system is prudently made. In this paper, an attempt has been made to quantify the cost and embodied energy benefits for a low-rise residential building by choosing two different structural systems, namely moment resisting framed (MRF) construction system and the partly load-bearing (PLB) system. The influence of choice of materials, contributing to reduction of cost and/or energy is discussed. It is clearly noticed that, when the structural system is re-configured as a PLB system from the existing MRF system there is significant reduction in cost and embodied energy without changing the architectural form.展开更多
Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study ...Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study aims to increase the efficiency of search and rescue operations and the safety offirefigh-ters by detecting and identifying the disaster site by recognizing collapsed areas,obstacles,and rescuers on-site.A fusion algorithm combining a camera and three-dimension light detection and ranging(3D LiDAR)is proposed to detect and loca-lize the interiors of disaster sites.The algorithm detects obstacles by analyzingfloor segmentation and edge patterns using a mask regional convolutional neural network(mask R-CNN)features model based on the visual data collected from a parallelly connected camera and 3D LiDAR.People as objects are detected using you only look once version 4(YOLOv4)in the image data to localize persons requiring rescue.The point cloud data based on 3D LiDAR cluster the objects using the density-based spatial clustering of applications with noise(DBSCAN)clustering algorithm and estimate the distance to the actual object using the center point of the clustering result.The proposed artificial intelligence(AI)algorithm was verified based on individual sensors using a sensor-mounted robot in an actual building to detectfloor surfaces,atypical obstacles,and persons requiring rescue.Accordingly,the fused AI algorithm was comparatively verified.展开更多
The ways which are used today in order to light houses, offices, and most of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">indoor a...The ways which are used today in order to light houses, offices, and most of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">indoor areas are inefficient as a lot of energy is consumed unnecessarily during the day time. Mainly this problem</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">because the interior lighting design consider the worst case when the light service is at night, </span><span style="font-family:Verdana;">which</span><span style="font-family:Verdana;"> is not always valid. Also in most cases the lighting system design rel</span><span style="font-family:Verdana;">ies</span><span style="font-family:Verdana;"> on people to control the lights switching on and off. This problem is also one of the design concern</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in Green Building. In this paper, a solution to this problem and a method for people’s comfort who use the indoor facilities in industrial building</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is presented. In the proposed smart lighting system, lights switch on automatically when there is somebody in the room or in the occupied space and switch off when there is no occupancy. In addition to this known technique, adjustment of the brightness level of the lights will be possible via the personal computer or any other smart device. In this method, for the illumination level in the area, where is needed to be controlled for better energy saving, </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">light automatically is measured by </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">sensor and considering the amount of background lights coming from outside, automatically the brightness of lights is controlled to reach the preset level that determined for that room. By the means of this method, it is possible to provide better user comfort, avoid human forcedness to switch the light on and off, and hence effective energy sav</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;">. Arduino controller is used to build the controller and to demonstrate the results. Economic analysis was done to calculate the percentage of the energy saving that can be obtained by implementing the proposed smart lighting controller. As an outcome </span><span style="font-family:Verdana;">of </span><span style="font-family:Verdana;">the economic analysis, energy saving norm for an office with </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">standard size was calculated.展开更多
Daylighting studies in buildings are key parts of environmental analysis and can be easily conducted at the early stages of design as part of environmentally responsive building design as well as to inform the final a...Daylighting studies in buildings are key parts of environmental analysis and can be easily conducted at the early stages of design as part of environmentally responsive building design as well as to inform the final architectural layout and interior design. The main aim of this study is to demonstrate how such daylighting studies can be completed at the early stages of design and, at the same time, to show the impact of window design and positioning on building indoor environments. The paper is focused on a study of window influence on room daylighting in residential buildings and computer lighting simulations in software packages: Windows Daylighting System and Autodesk Ecotect Analysis, have been carried out for different style and positioning of windows using several case studies. The main findings clearly indicated that not only the window size and style matters, but also the positioning of windows considering external walls which would make a significant influence on room daylighting levels and, therefore, such daylight studies are very important for the early stage of environmental analysis during building design.展开更多
Nonlinear response history analyses and use of strong ground motion data including near-field effects has become a common practice in both performance based design of tall buildings and design of base-isolated buildin...Nonlinear response history analyses and use of strong ground motion data including near-field effects has become a common practice in both performance based design of tall buildings and design of base-isolated buildings. On the other hand, ordinary buildings are commonly analysed via response spectrum analysis following the rules of conventional seismic codes, most of which do not take near-field effects into account. This study evaluates the necessity and the adequacy of near-source factors for ordinary fixed-base buildings that are not specifically classified as tall, by comparing dynamic responses of 3, 8, and 15-story benchmark buildings obtained via (1) linear time history analyses using 220 record components from 13 historical earthquakes and 45 synthetic earthquake records of different magnitudes and fault distances and (2) response spectrum analyses in accordance with the Turkish Earthquake Code 2007 -representing seismic codes not taking near-field effects into account- and the Uniform Building Code 1997 which takes near-field effects into account via near-source factors that amplify design response spectrum. It is shown that near-source factors are crucial for the safe design of not-so-tall ordinary fixed-base buildings but those defined in UBC97 may still not be adequate for those located in the vicinity of the fault.展开更多
The research presents an improved method of rational design of energy-efficient low-rise residential buildings according to their life cycle. The mathematical model for finding the optimal version of draft power-effic...The research presents an improved method of rational design of energy-efficient low-rise residential buildings according to their life cycle. The mathematical model for finding the optimal version of draft power-efficient residential building has been developed. For conditions of Ukraine the optimization problem has been set and solved (finding the optimal version of the draft energy-efficient buildings). The calculations prove the fact that the construction of passive houses in Ukraine today is economically feasible. Scientific and practical regulations, outlined in the research, can be used by all participants of the investment programs, and energy-efficiency projects, renovation projects and developing normative-technical documents.展开更多
近年来,轻钢装配式建筑因施工便捷、环境效益高等优势,大量应用于工程实践,有很好的应用前景。而由于传统暖通空调设计方法导致的后续施工会二次破坏建筑构件,传统暖通空调设计方法已不适用于轻钢装配式建筑。目前,针对暖通空调与轻钢...近年来,轻钢装配式建筑因施工便捷、环境效益高等优势,大量应用于工程实践,有很好的应用前景。而由于传统暖通空调设计方法导致的后续施工会二次破坏建筑构件,传统暖通空调设计方法已不适用于轻钢装配式建筑。目前,针对暖通空调与轻钢装配式建筑融合发展的研究与应用相对较少,为填补该领域的空白,提出了一种暖通空调系统(以多联机为例)与轻钢装配式建筑一体化设计新方法IB-VRV(variable refrigerant volume air conditioner integrating with buildings)。探究了适用于传统建筑的暖通空调设计方法与适用于轻钢装配式建筑的暖通空调设计方法的差异。并根据这两种暖通空调设计方法的差异,在现有传统暖通空调设计理念的基础上,凝练出暖通空调系统与轻钢装配式建筑融合发展三项原则。这三项融合原则分别为结构安全优先、非同寿命周期和功能区弹性化原则。基于上述三原则,进一步提出暖通空调系统与轻钢装配式建筑融合新方式,并以多联机系统为案例展开深入分析。研究结果表明,所提出的IB-VRV能够弥补传统暖通空调设计方法应用于轻钢装配式建筑的不足,并能充分发挥轻钢装配式建筑自重轻、结构简单、构件小可暗装等优势。该研究为暖通空调系统与其他类型装配式建筑一体化设计开拓了思路,奠定了理论基础。展开更多
文摘The rapid development of intelligent technology has led to its introduction into the field of electrical lighting in buildings.It provides more technical support for system design,use,and management,and creates a comfortable and safe living environment.The adoption of intelligent technology enables the creation of an intelligent management system,where controllers and sensors are used to adjust the light source within the building,monitor and manage the lighting system in real time,monitor the energy consumption and safety of the system,and achieve the goal of energy saving and emission reduction.This paper briefly discusses the application and significance of intelligent technology in electrical lighting and puts forward design ideas to optimize electrical lighting and measures for lighting system management.
文摘A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.
文摘In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the decision making process. Minimizing the cost of construction without compromising on the architectural and structural requirements is the primary objective of the residential buildings of stake-holders, especially the owners. The choice of structural system and the materials used for construction play a crucial role in this effort. This means that the use of expensive and/or voluminous materials such as cement, steel, masonry etc. is optimized. This could lead to significant reduction in embodied energy as well, if the choice of the structural system is prudently made. In this paper, an attempt has been made to quantify the cost and embodied energy benefits for a low-rise residential building by choosing two different structural systems, namely moment resisting framed (MRF) construction system and the partly load-bearing (PLB) system. The influence of choice of materials, contributing to reduction of cost and/or energy is discussed. It is clearly noticed that, when the structural system is re-configured as a PLB system from the existing MRF system there is significant reduction in cost and embodied energy without changing the architectural form.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(No.2020R1I1A3068274),Received by Junho Ahn.https://www.nrf.re.kr/supported by the Korea Agency for Infrastructure Technology Advancement(KAIA)by the Ministry of Land,Infrastructure and Transport under Grant(No.22QPWO-C152223-04),Received by Chulsu Kim.https://www.kaia.re.kr/.
文摘Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study aims to increase the efficiency of search and rescue operations and the safety offirefigh-ters by detecting and identifying the disaster site by recognizing collapsed areas,obstacles,and rescuers on-site.A fusion algorithm combining a camera and three-dimension light detection and ranging(3D LiDAR)is proposed to detect and loca-lize the interiors of disaster sites.The algorithm detects obstacles by analyzingfloor segmentation and edge patterns using a mask regional convolutional neural network(mask R-CNN)features model based on the visual data collected from a parallelly connected camera and 3D LiDAR.People as objects are detected using you only look once version 4(YOLOv4)in the image data to localize persons requiring rescue.The point cloud data based on 3D LiDAR cluster the objects using the density-based spatial clustering of applications with noise(DBSCAN)clustering algorithm and estimate the distance to the actual object using the center point of the clustering result.The proposed artificial intelligence(AI)algorithm was verified based on individual sensors using a sensor-mounted robot in an actual building to detectfloor surfaces,atypical obstacles,and persons requiring rescue.Accordingly,the fused AI algorithm was comparatively verified.
文摘The ways which are used today in order to light houses, offices, and most of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">indoor areas are inefficient as a lot of energy is consumed unnecessarily during the day time. Mainly this problem</span><span style="font-size:10pt;font-family:""> </span><span style="font-family:Verdana;">because the interior lighting design consider the worst case when the light service is at night, </span><span style="font-family:Verdana;">which</span><span style="font-family:Verdana;"> is not always valid. Also in most cases the lighting system design rel</span><span style="font-family:Verdana;">ies</span><span style="font-family:Verdana;"> on people to control the lights switching on and off. This problem is also one of the design concern</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> in Green Building. In this paper, a solution to this problem and a method for people’s comfort who use the indoor facilities in industrial building</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> is presented. In the proposed smart lighting system, lights switch on automatically when there is somebody in the room or in the occupied space and switch off when there is no occupancy. In addition to this known technique, adjustment of the brightness level of the lights will be possible via the personal computer or any other smart device. In this method, for the illumination level in the area, where is needed to be controlled for better energy saving, </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">light automatically is measured by </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">sensor and considering the amount of background lights coming from outside, automatically the brightness of lights is controlled to reach the preset level that determined for that room. By the means of this method, it is possible to provide better user comfort, avoid human forcedness to switch the light on and off, and hence effective energy sav</span><span style="font-family:Verdana;">ing</span><span style="font-family:Verdana;">. Arduino controller is used to build the controller and to demonstrate the results. Economic analysis was done to calculate the percentage of the energy saving that can be obtained by implementing the proposed smart lighting controller. As an outcome </span><span style="font-family:Verdana;">of </span><span style="font-family:Verdana;">the economic analysis, energy saving norm for an office with </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">standard size was calculated.
文摘Daylighting studies in buildings are key parts of environmental analysis and can be easily conducted at the early stages of design as part of environmentally responsive building design as well as to inform the final architectural layout and interior design. The main aim of this study is to demonstrate how such daylighting studies can be completed at the early stages of design and, at the same time, to show the impact of window design and positioning on building indoor environments. The paper is focused on a study of window influence on room daylighting in residential buildings and computer lighting simulations in software packages: Windows Daylighting System and Autodesk Ecotect Analysis, have been carried out for different style and positioning of windows using several case studies. The main findings clearly indicated that not only the window size and style matters, but also the positioning of windows considering external walls which would make a significant influence on room daylighting levels and, therefore, such daylight studies are very important for the early stage of environmental analysis during building design.
文摘Nonlinear response history analyses and use of strong ground motion data including near-field effects has become a common practice in both performance based design of tall buildings and design of base-isolated buildings. On the other hand, ordinary buildings are commonly analysed via response spectrum analysis following the rules of conventional seismic codes, most of which do not take near-field effects into account. This study evaluates the necessity and the adequacy of near-source factors for ordinary fixed-base buildings that are not specifically classified as tall, by comparing dynamic responses of 3, 8, and 15-story benchmark buildings obtained via (1) linear time history analyses using 220 record components from 13 historical earthquakes and 45 synthetic earthquake records of different magnitudes and fault distances and (2) response spectrum analyses in accordance with the Turkish Earthquake Code 2007 -representing seismic codes not taking near-field effects into account- and the Uniform Building Code 1997 which takes near-field effects into account via near-source factors that amplify design response spectrum. It is shown that near-source factors are crucial for the safe design of not-so-tall ordinary fixed-base buildings but those defined in UBC97 may still not be adequate for those located in the vicinity of the fault.
文摘The research presents an improved method of rational design of energy-efficient low-rise residential buildings according to their life cycle. The mathematical model for finding the optimal version of draft power-efficient residential building has been developed. For conditions of Ukraine the optimization problem has been set and solved (finding the optimal version of the draft energy-efficient buildings). The calculations prove the fact that the construction of passive houses in Ukraine today is economically feasible. Scientific and practical regulations, outlined in the research, can be used by all participants of the investment programs, and energy-efficiency projects, renovation projects and developing normative-technical documents.
文摘近年来,轻钢装配式建筑因施工便捷、环境效益高等优势,大量应用于工程实践,有很好的应用前景。而由于传统暖通空调设计方法导致的后续施工会二次破坏建筑构件,传统暖通空调设计方法已不适用于轻钢装配式建筑。目前,针对暖通空调与轻钢装配式建筑融合发展的研究与应用相对较少,为填补该领域的空白,提出了一种暖通空调系统(以多联机为例)与轻钢装配式建筑一体化设计新方法IB-VRV(variable refrigerant volume air conditioner integrating with buildings)。探究了适用于传统建筑的暖通空调设计方法与适用于轻钢装配式建筑的暖通空调设计方法的差异。并根据这两种暖通空调设计方法的差异,在现有传统暖通空调设计理念的基础上,凝练出暖通空调系统与轻钢装配式建筑融合发展三项原则。这三项融合原则分别为结构安全优先、非同寿命周期和功能区弹性化原则。基于上述三原则,进一步提出暖通空调系统与轻钢装配式建筑融合新方式,并以多联机系统为案例展开深入分析。研究结果表明,所提出的IB-VRV能够弥补传统暖通空调设计方法应用于轻钢装配式建筑的不足,并能充分发挥轻钢装配式建筑自重轻、结构简单、构件小可暗装等优势。该研究为暖通空调系统与其他类型装配式建筑一体化设计开拓了思路,奠定了理论基础。