Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea...Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.展开更多
In the existing formation model,vehicles in the same lane or adjacent lane are regarded as the structure,and the driving behavior of vehicles is studied from the perspectives of safety,speed consistency,and stability,...In the existing formation model,vehicles in the same lane or adjacent lane are regarded as the structure,and the driving behavior of vehicles is studied from the perspectives of safety,speed consistency,and stability,and the speed control model is proposed from the perspective of vehicles themselves,to obtain a stable fleet with the same distance and speed.However,in this process,the initial condition of the vehicle,the traffic flow environment,and the efficiency of the fleet formation are less considered.Therefore,based on summarizing the existing fleet building model,this paper puts forward the rapid construction model and algorithm of a cooperative adaptive cruise control platoon fleet.One of the important goals of forming a team is to enter the team with the smoothest trajectory in the shortest time.Therefore,this chapter studies the trajectory optimization of the vehicle formation process from the perspective of vehicle dynamics.展开更多
In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow st...In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow stability.The influences of various factors such as lane change locations,timing,and the current traffic state on stability are discussed.In this analysis,it is assumed that the lane change location and the entry position in the adjacent lane have already been selected,without considering the specific intention behind the lane change.The speeds of the involved vehicles are adjusted based on an existing lane change model,and various conditions are analyzed for traffic flow disturbances,including duration,shock amplitude,and driving delays.Numerical calculations are provided to illustrate these effects.Additionally,traffic flow stability is factored into the lane change decision-making process.By incorporating disturbances to the fleet into the lane change income model,both a lane change intention model and a lane change execution model are constructed.These models are then compared with a model that does not account for stability,leading to the corresponding conclusions.展开更多
A new adaptive cruise control (ACC) method based on the desired safety headway distance is investigated for improving the vehicle traffic safety at high speed by regulating the additional throttle opening and braking ...A new adaptive cruise control (ACC) method based on the desired safety headway distance is investigated for improving the vehicle traffic safety at high speed by regulating the additional throttle opening and braking torque of driving wheels only. The selection of headway distance sensors, the determination of desired safety headway distance and desired deceleration are elaborated. The ACC flowchart and simulation, as well as signal misinformation and its resolutions are described. The simulation proves that the new ACC method is simpler and feasible. The new method is easily integrated ACC with ABS/ASR to form an organic ABS/ASR/ACC system.展开更多
This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant forma...This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant formation tracking process for the multiple cruise missile system is divided into the guidance loop and the control loop. Then protocols are constructed to accomplish distributed fault-tolerant formation tracking in the guidance loop with the adaptive updating mechanism, in the condition where neither the knowledge about actuator malfunctions nor any global information of the communication topology remains available. Moreover, sufficient conditions to accomplish formation tracking are presented, and it is shown that the multiple cruise missile system can carry on the predefined time-varying fault-tolerant control (FTC) formation tracking through the active disturbances rejection controller (ADRC) and the proportion integration (PI) controller by the way of the fault-tolerant protocol utilizing the designed strategies, in the event of actuator failures. At last, numerical analysis and simulation are designed to verify the theoretical results.展开更多
This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly cha...This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics.Motivated by recent results on tangent linearization control,the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control.Through a proper model transformation,it can be proven that the tracking error of the designed closed-loop system decays exponentially.Simulation studies are conducted for trimmed cruise conditions of 110000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated.The effectiveness of the controller is demonstrated by simulation results.展开更多
Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect ...Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect is covered by the notion of string stability. String-stable behavior is thus considered an essential requirement for the design of automatic distance control systems, which are needed to allow for safe driving at time gaps well below 1 s. Using wireless inter-vehicle communications to provide real-time information of the preceding vehicle, in addition to the information obtained by common Adaptive Cruise Control (ACC) sensors, appears to significantly decrease the feasible time gap, which is shown by practical experiments with a test fleet consisting of six passenger vehicles. The large-scale deployment of this system, known as Cooperative ACC (CACC), however, poses challenges with respect to the reliability of the wireless communication system. A solution for this scalability problem can be found in decreasing the transmission power and/or beaconing rate, or adapting the communications protocol. Although the main CACC objective is to increase road throughput, the first commercial application of CACC is foreseen to be in truck platooning, since short distance following is expected to yield significant fuel savings in this case.展开更多
For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication dela...For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.展开更多
A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative veloc...A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative velocity and the deviation between the actual headway distance and the prescribed safety distance. Based on this, two state space models are built and the linear quadratic optimal control theory is used to yield desired velocity for the ACC-equipped vehicle when with the target vehicle detected. By switching among four control modes, the desired velocity profile is designed to deal with different running situations. A velocity controller, which includes a PID controller for throttle openness and a neural network controller for brake application, is developed to achieve the desired velocity profile. The proposed control strategy is applied to a non-linear vehicle model in a simulation environment and is shown to provide the ACC vehicle comfortable ride and satisfying safety.展开更多
With the advantage of fast calculation and map resources on cloud control system(CCS), cloud-based predictive cruise control(CPCC) for heavy trucks has great potential to improve energy efficiency, which is significan...With the advantage of fast calculation and map resources on cloud control system(CCS), cloud-based predictive cruise control(CPCC) for heavy trucks has great potential to improve energy efficiency, which is significant to achieve the goal of national carbon neutrality. However, most investigations focus on the on-board predictive cruise control(PCC) system,lack of research on CPCC architecture under CCS. Besides, the current PCC algorithms have the problems of a single control target and high computational complexity, which hinders the improvement of the control effect. In this paper, a layered architecture based on CCS is proposed to effectively address the realtime computing of CPCC system and the deployment of its algorithm on vehicle-cloud. In addition, based on the dynamic programming principle and the proposed road point segmentation method(RPSM), a PCC algorithm is designed to optimize the speed and gear of heavy trucks with slope information. Simulation results show that the CPCC system can adaptively control vehicle driving through the slope prediction, with fuel-saving rate of 6.17% in comparison with the constant cruise control. Also,compared with other similar algorithms, the PCC algorithm can make the engine operate more in the efficient zone by cooperatively optimizing the gear and speed. Moreover, the RPSM algorithm can reconfigure the road in advance, with a 91% roadpoint reduction rate, significantly reducing algorithm complexity.Therefore, this study has essential research significance for the economic driving of heavy trucks and the promotion of the CPCC system.展开更多
To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-...To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-changing intention for the preceding vehicle.First,the Next Generation Simulation dataset is used to train a lane-changing intention prediction algorithm based on a sliding window support vector machine,and the lane-changing intention of the preceding vehicle in the current lane is identified by lateral position offset.Second,according to the lane-changing intention and collision threat of the preceding vehicle,the target vehicle selection algorithm is studied under three different conditions:safe lane-changing,dangerous lane-changing,and lane-changing cancellation.Finally,the effectiveness of the proposed algorithm is verified in a co-simulation platform.The simulation results show that the target vehicle selection algorithm can ensure the smooth transfer of the target vehicle and effectively reduce the longitudinal acceleration fluctuation of the subject vehicle when the preceding vehicle changes lanes safely or cancels their lane change maneuver.In the case of a dangerous lane change,the target vehicle selection algorithm proposed in this paper can respond more rapidly to a dangerous lane change than the target vehicle selection method of the traditional ACC system;thus,it can effectively avoid collisions and improve the safety of the subject vehicle.展开更多
To develop cruise control system of an automobile with the metal pushing V-belt type CVT,the dynamic model of automobile travelling longitudinally is established, and the fuzzy controller of control system is designed...To develop cruise control system of an automobile with the metal pushing V-belt type CVT,the dynamic model of automobile travelling longitudinally is established, and the fuzzy controller of control system is designed. Considering uncertainty system parameter and exterior resistance disturbances, the stability of controller is investigated by simulating. The results of its simulation show that the fuzzy controller designed has practicability.展开更多
This paper proposes a cruise control system(CCS)to improve an electric vehicle's range,which is a significant hurdle in market penetration of electric vehicles.A typical driver or a conventional adaptive cruise co...This paper proposes a cruise control system(CCS)to improve an electric vehicle's range,which is a significant hurdle in market penetration of electric vehicles.A typical driver or a conventional adaptive cruise control(ACC)controls an electric vehicle(EV)such that it follows a lead vehicle or drives close to the speed limit.This driving behaviour may cause the EV to cruise significantly above the average traffic speed.It may later require the EV to slow down due to the traffic ripples,wasting a part of the EV's kinetic energy.In addition,the EV will also waste higher speed dependent dissipative energies,which are spent to overcome the aerodynamic drag force and rolling resistance.This paper proposes a CCS to address this issue.The proposed CCS controls an EV's speed such that it prevents the vehicle from speeding significantly above the average traffic speed.In addition,it maintains a safe inter-vehicular distance from the lead vehicle.The design and simulation analysis of the proposed CCS were in a MATLAB simulation environment.The simulation environment includes an energy consumption model of an EV,which was developed using data collected from an electric bus operation in London.In the simulation analysis,the proposed system reduced the EV's energy consumption by approximately 36.6%in urban drive cycles and 15.4%in motorway drive cycles.Finally,the experimental analysis using a Nissan e-NV200on two urban routes showed approximately 30.8%energy savings.展开更多
Intelligent vehicles can effectively improve traffic congestion and road traffic safety.Adaptive cruise followingcontrol(ACFC)is a vital part of intelligent vehicles.In this paper,a new hierarchical vehicle-following ...Intelligent vehicles can effectively improve traffic congestion and road traffic safety.Adaptive cruise followingcontrol(ACFC)is a vital part of intelligent vehicles.In this paper,a new hierarchical vehicle-following control strategy is presented by synthesizing the variable time headway model,type-2 fuzzy control,feedforward+fuzzy proportion integration(PI)feedback(F+FPIF)control,and inverse longitudinal dynamics model of vehicles.Firstly,a traditional variable time headway model is improved considering the acceleration of the lead car.Secondly,an interval type-2 fuzzy logic controller(IT2 FLC)is designed for the upper structure of the ACFC system to simulate the driver's operating habits.To reduce the nonlinear influence and improve the tracking accuracy for the desired acceleration,the control strategy of F+FPIF is given for the lower control structure.Thirdly,the lower control method proposed in this paper is compared with the fuzzy PI control and the traditional method(no lower controller for tracking desired acceleration)separately.Meanwhile,the proportion integration differentiation(PID),linear quadratic regulator(LQR),subsection function control(SFC)and type-1 fuzzy logic control(T1 FLC)are respectively compared with the IT2 FLC in control performance under different scenes.Finally,the simulation results show the effectiveness of IT2 FLC for the upper structure and F+FPIF control for the lower structure.展开更多
The software of behaviour-based algorithm~ was parted to several functional modules which represented different behaviours with different priorities. A basic algorithm with S-type arbiter and an improved algorithm wit...The software of behaviour-based algorithm~ was parted to several functional modules which represented different behaviours with different priorities. A basic algorithm with S-type arbiter and an improved algorithm with I-type arbiter were compared. The improved algorithm can reduce judging time and avoid some mistakes of the basic one. In mapping obstacles, the robot adjusted the spread angle according to different distances to obstacles in scaled vector field histogram (SVFH) algorithm, and then the robot turned more sharply in near obstacles than in far obstacles, which made the robot move more safely and smoothly in a cluttered room.展开更多
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-...Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.展开更多
In this paper, the robust output feedback cruise control for high-speed train movement with uncertain parameters is investigated. The dynamic of a high-speed train is modeled by a cascade of cars connected by flexible...In this paper, the robust output feedback cruise control for high-speed train movement with uncertain parameters is investigated. The dynamic of a high-speed train is modeled by a cascade of cars connected by flexible couplers, which is subject to rolling mechanical resistance, aerodynamic drag and wind gust. Based on Lyapunov's stability theory, the sufficient condition for the existence of the robust output feedback cruise control law is given in terms of linear matrix inequalities(LMIs), under which the high-speed train tracks the desired speed, the relative spring displacement between the two neighboring cars is stable at the equilibrium state, and meanwhile a small prescribed H∞ disturbance attenuation level is guaranteed. One numerical example is given to illustrate the effectiveness of the proposed methods.展开更多
With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology...With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology develops constantly,the development of automobile automatic obstacle avoidance and cruise system accelerates gradually,and the requirement on distance control becomes stricter.Automobile automatic obstacle avoidance and cruise system can determine the conditions of automobiles and roads using sensing technology,automatically adopt measures to control automobile after discovering road safety hazards,thus to reduce the incidence of traffic accidents.To prevent accidental collision of automobile which are installed with automatic obstacle avoidance and cruise system,active brake should be controlled during driving.This study put forward a neural network based proportional-integral-derivative(PID)control algorithm.The active brake of automobiles was effectively controlled using the system to keep the distance between automobiles.Moreover the algorithm was tested using professional automobile simulation platform.The results demonstrated that neural network based PID control algorithm can precisely and efficiently control the distance between two cars.This work provides a reference for the development of automobile automatic obstacle avoidance and cruise system.展开更多
To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furtherm...To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.展开更多
基金Supported by International Technology Cooperation Program of Science and Technology Commission of Shanghai Municipality of China(Grant No.21160710600)National Nature Science Foundation of China(Grant No.52372393)Shanghai Pujiang Program of China(Grant No.21PJD075).
文摘Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.
文摘In the existing formation model,vehicles in the same lane or adjacent lane are regarded as the structure,and the driving behavior of vehicles is studied from the perspectives of safety,speed consistency,and stability,and the speed control model is proposed from the perspective of vehicles themselves,to obtain a stable fleet with the same distance and speed.However,in this process,the initial condition of the vehicle,the traffic flow environment,and the efficiency of the fleet formation are less considered.Therefore,based on summarizing the existing fleet building model,this paper puts forward the rapid construction model and algorithm of a cooperative adaptive cruise control platoon fleet.One of the important goals of forming a team is to enter the team with the smoothest trajectory in the shortest time.Therefore,this chapter studies the trajectory optimization of the vehicle formation process from the perspective of vehicle dynamics.
文摘In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow stability.The influences of various factors such as lane change locations,timing,and the current traffic state on stability are discussed.In this analysis,it is assumed that the lane change location and the entry position in the adjacent lane have already been selected,without considering the specific intention behind the lane change.The speeds of the involved vehicles are adjusted based on an existing lane change model,and various conditions are analyzed for traffic flow disturbances,including duration,shock amplitude,and driving delays.Numerical calculations are provided to illustrate these effects.Additionally,traffic flow stability is factored into the lane change decision-making process.By incorporating disturbances to the fleet into the lane change income model,both a lane change intention model and a lane change execution model are constructed.These models are then compared with a model that does not account for stability,leading to the corresponding conclusions.
文摘A new adaptive cruise control (ACC) method based on the desired safety headway distance is investigated for improving the vehicle traffic safety at high speed by regulating the additional throttle opening and braking torque of driving wheels only. The selection of headway distance sensors, the determination of desired safety headway distance and desired deceleration are elaborated. The ACC flowchart and simulation, as well as signal misinformation and its resolutions are described. The simulation proves that the new ACC method is simpler and feasible. The new method is easily integrated ACC with ABS/ASR to form an organic ABS/ASR/ACC system.
基金supported by the Natural Science Foundation of China(61101004 61803014)
文摘This paper studies time-varying fault-tolerant formation tracking problems for the multiple cruise missile system under directed topologies subjected to actuator failures. Firstly, the timevarying fault-tolerant formation tracking process for the multiple cruise missile system is divided into the guidance loop and the control loop. Then protocols are constructed to accomplish distributed fault-tolerant formation tracking in the guidance loop with the adaptive updating mechanism, in the condition where neither the knowledge about actuator malfunctions nor any global information of the communication topology remains available. Moreover, sufficient conditions to accomplish formation tracking are presented, and it is shown that the multiple cruise missile system can carry on the predefined time-varying fault-tolerant control (FTC) formation tracking through the active disturbances rejection controller (ADRC) and the proportion integration (PI) controller by the way of the fault-tolerant protocol utilizing the designed strategies, in the event of actuator failures. At last, numerical analysis and simulation are designed to verify the theoretical results.
基金supported by the National Natural Science Foundation of China (6071000260904007)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in Universitythe State Key Laboratory of Robotics and System (SKLRS200801AO3)
文摘This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics.Motivated by recent results on tangent linearization control,the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control.Through a proper model transformation,it can be proven that the tracking error of the designed closed-loop system decays exponentially.Simulation studies are conducted for trimmed cruise conditions of 110000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated.The effectiveness of the controller is demonstrated by simulation results.
文摘Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect is covered by the notion of string stability. String-stable behavior is thus considered an essential requirement for the design of automatic distance control systems, which are needed to allow for safe driving at time gaps well below 1 s. Using wireless inter-vehicle communications to provide real-time information of the preceding vehicle, in addition to the information obtained by common Adaptive Cruise Control (ACC) sensors, appears to significantly decrease the feasible time gap, which is shown by practical experiments with a test fleet consisting of six passenger vehicles. The large-scale deployment of this system, known as Cooperative ACC (CACC), however, poses challenges with respect to the reliability of the wireless communication system. A solution for this scalability problem can be found in decreasing the transmission power and/or beaconing rate, or adapting the communications protocol. Although the main CACC objective is to increase road throughput, the first commercial application of CACC is foreseen to be in truck platooning, since short distance following is expected to yield significant fuel savings in this case.
基金Supported by National Natural Science Foundation of China(Grant No.61371076)
文摘For the Cooperative Adaptive Cruise Control (CACC) Algorithm, existing research studies mainly focus on how inter-vehicle communication can be used to develop CACC controller, the influence of the communication delays and lags of the actuators to the string stability. However, whether the string stability can be guaranteed when inter-vehicle communication is invalid partially has hardly been considered. This paper presents an improved CACC algorithm based on the sliding mode control theory and analyses the range of CACC controller parameters to maintain string stability. A dynamic model of vehicle spacing deviation in a platoon is then established, and the string stability conditions under improved CACC are analyzed. Unlike the traditional CACC algorithms, the proposed algorithm can ensure the functionality of the CACC system even if inter-vehicle communication is partially invalid. Finally, this paper establishes a platoon of five vehicles to simulate the improved CACC algorithm in MATLAB/Simulink, and the simulation results demonstrate that the improved CACC algorithm can maintain the string stability of a CACC platoon through adjusting the controller parameters and enlarging the spacing to prevent accidents. With guaranteed string stability, the proposed CACC algorithm can prevent oscillation of vehicle spacing and reduce chain collision accidents under real-world circumstances. This research proposes an improved CACC algorithm, which can guarantee the string stability when inter-vehicle communication is invalid.
基金the National Natural Science Foundation of China (50122155)
文摘A new longitudinal control strategy for vehicle adaptive cruise control (ACC) systems is presented. The running relationship between the ACC vehicle and the detected target vehicle is described by the relative velocity and the deviation between the actual headway distance and the prescribed safety distance. Based on this, two state space models are built and the linear quadratic optimal control theory is used to yield desired velocity for the ACC-equipped vehicle when with the target vehicle detected. By switching among four control modes, the desired velocity profile is designed to deal with different running situations. A velocity controller, which includes a PID controller for throttle openness and a neural network controller for brake application, is developed to achieve the desired velocity profile. The proposed control strategy is applied to a non-linear vehicle model in a simulation environment and is shown to provide the ACC vehicle comfortable ride and satisfying safety.
基金supported by the National Key Research and Development Program (2021YFB2501003)the Key Research and Development Program of Guangdong Province (2019B090912001)the China Postdoctoral Science Foundation (2020M680531)。
文摘With the advantage of fast calculation and map resources on cloud control system(CCS), cloud-based predictive cruise control(CPCC) for heavy trucks has great potential to improve energy efficiency, which is significant to achieve the goal of national carbon neutrality. However, most investigations focus on the on-board predictive cruise control(PCC) system,lack of research on CPCC architecture under CCS. Besides, the current PCC algorithms have the problems of a single control target and high computational complexity, which hinders the improvement of the control effect. In this paper, a layered architecture based on CCS is proposed to effectively address the realtime computing of CPCC system and the deployment of its algorithm on vehicle-cloud. In addition, based on the dynamic programming principle and the proposed road point segmentation method(RPSM), a PCC algorithm is designed to optimize the speed and gear of heavy trucks with slope information. Simulation results show that the CPCC system can adaptively control vehicle driving through the slope prediction, with fuel-saving rate of 6.17% in comparison with the constant cruise control. Also,compared with other similar algorithms, the PCC algorithm can make the engine operate more in the efficient zone by cooperatively optimizing the gear and speed. Moreover, the RPSM algorithm can reconfigure the road in advance, with a 91% roadpoint reduction rate, significantly reducing algorithm complexity.Therefore, this study has essential research significance for the economic driving of heavy trucks and the promotion of the CPCC system.
基金Supported by National Key Research and Development Program(Grant No.2017YFB0102601)National Natural Science Foundation of China(Grant Nos.51775236,U1564214).
文摘To improve the ride comfort and safety of a traditional adaptive cruise control(ACC)system when the preceding vehicle changes lanes,it proposes a target vehicle selection algorithm based on the prediction of the lane-changing intention for the preceding vehicle.First,the Next Generation Simulation dataset is used to train a lane-changing intention prediction algorithm based on a sliding window support vector machine,and the lane-changing intention of the preceding vehicle in the current lane is identified by lateral position offset.Second,according to the lane-changing intention and collision threat of the preceding vehicle,the target vehicle selection algorithm is studied under three different conditions:safe lane-changing,dangerous lane-changing,and lane-changing cancellation.Finally,the effectiveness of the proposed algorithm is verified in a co-simulation platform.The simulation results show that the target vehicle selection algorithm can ensure the smooth transfer of the target vehicle and effectively reduce the longitudinal acceleration fluctuation of the subject vehicle when the preceding vehicle changes lanes safely or cancels their lane change maneuver.In the case of a dangerous lane change,the target vehicle selection algorithm proposed in this paper can respond more rapidly to a dangerous lane change than the target vehicle selection method of the traditional ACC system;thus,it can effectively avoid collisions and improve the safety of the subject vehicle.
基金This project is supported by National Natural Science Foundation of China (No.50005026)
文摘To develop cruise control system of an automobile with the metal pushing V-belt type CVT,the dynamic model of automobile travelling longitudinally is established, and the fuzzy controller of control system is designed. Considering uncertainty system parameter and exterior resistance disturbances, the stability of controller is investigated by simulating. The results of its simulation show that the fuzzy controller designed has practicability.
基金partly supported by the UK Engineering and Physical Sciences Research Council(EPSRC)(EP/R035199/1)
文摘This paper proposes a cruise control system(CCS)to improve an electric vehicle's range,which is a significant hurdle in market penetration of electric vehicles.A typical driver or a conventional adaptive cruise control(ACC)controls an electric vehicle(EV)such that it follows a lead vehicle or drives close to the speed limit.This driving behaviour may cause the EV to cruise significantly above the average traffic speed.It may later require the EV to slow down due to the traffic ripples,wasting a part of the EV's kinetic energy.In addition,the EV will also waste higher speed dependent dissipative energies,which are spent to overcome the aerodynamic drag force and rolling resistance.This paper proposes a CCS to address this issue.The proposed CCS controls an EV's speed such that it prevents the vehicle from speeding significantly above the average traffic speed.In addition,it maintains a safe inter-vehicular distance from the lead vehicle.The design and simulation analysis of the proposed CCS were in a MATLAB simulation environment.The simulation environment includes an energy consumption model of an EV,which was developed using data collected from an electric bus operation in London.In the simulation analysis,the proposed system reduced the EV's energy consumption by approximately 36.6%in urban drive cycles and 15.4%in motorway drive cycles.Finally,the experimental analysis using a Nissan e-NV200on two urban routes showed approximately 30.8%energy savings.
基金the National Natural Science Foundation of China(61473048,61074093,61873321)。
文摘Intelligent vehicles can effectively improve traffic congestion and road traffic safety.Adaptive cruise followingcontrol(ACFC)is a vital part of intelligent vehicles.In this paper,a new hierarchical vehicle-following control strategy is presented by synthesizing the variable time headway model,type-2 fuzzy control,feedforward+fuzzy proportion integration(PI)feedback(F+FPIF)control,and inverse longitudinal dynamics model of vehicles.Firstly,a traditional variable time headway model is improved considering the acceleration of the lead car.Secondly,an interval type-2 fuzzy logic controller(IT2 FLC)is designed for the upper structure of the ACFC system to simulate the driver's operating habits.To reduce the nonlinear influence and improve the tracking accuracy for the desired acceleration,the control strategy of F+FPIF is given for the lower control structure.Thirdly,the lower control method proposed in this paper is compared with the fuzzy PI control and the traditional method(no lower controller for tracking desired acceleration)separately.Meanwhile,the proportion integration differentiation(PID),linear quadratic regulator(LQR),subsection function control(SFC)and type-1 fuzzy logic control(T1 FLC)are respectively compared with the IT2 FLC in control performance under different scenes.Finally,the simulation results show the effectiveness of IT2 FLC for the upper structure and F+FPIF control for the lower structure.
基金National Natural Science Foundation of China(No.60975059)Leading Academic Discipline Project of Shanghai Municipal Education Commission,China(No.J513032)Innovation Program of Shanghai Municipal Education Commission,China(No.09YZ343)
文摘The software of behaviour-based algorithm~ was parted to several functional modules which represented different behaviours with different priorities. A basic algorithm with S-type arbiter and an improved algorithm with I-type arbiter were compared. The improved algorithm can reduce judging time and avoid some mistakes of the basic one. In mapping obstacles, the robot adjusted the spread angle according to different distances to obstacles in scaled vector field histogram (SVFH) algorithm, and then the robot turned more sharply in near obstacles than in far obstacles, which made the robot move more safely and smoothly in a cluttered room.
文摘Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.
基金Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.2014JBM150)
文摘In this paper, the robust output feedback cruise control for high-speed train movement with uncertain parameters is investigated. The dynamic of a high-speed train is modeled by a cascade of cars connected by flexible couplers, which is subject to rolling mechanical resistance, aerodynamic drag and wind gust. Based on Lyapunov's stability theory, the sufficient condition for the existence of the robust output feedback cruise control law is given in terms of linear matrix inequalities(LMIs), under which the high-speed train tracks the desired speed, the relative spring displacement between the two neighboring cars is stable at the equilibrium state, and meanwhile a small prescribed H∞ disturbance attenuation level is guaranteed. One numerical example is given to illustrate the effectiveness of the proposed methods.
文摘With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology develops constantly,the development of automobile automatic obstacle avoidance and cruise system accelerates gradually,and the requirement on distance control becomes stricter.Automobile automatic obstacle avoidance and cruise system can determine the conditions of automobiles and roads using sensing technology,automatically adopt measures to control automobile after discovering road safety hazards,thus to reduce the incidence of traffic accidents.To prevent accidental collision of automobile which are installed with automatic obstacle avoidance and cruise system,active brake should be controlled during driving.This study put forward a neural network based proportional-integral-derivative(PID)control algorithm.The active brake of automobiles was effectively controlled using the system to keep the distance between automobiles.Moreover the algorithm was tested using professional automobile simulation platform.The results demonstrated that neural network based PID control algorithm can precisely and efficiently control the distance between two cars.This work provides a reference for the development of automobile automatic obstacle avoidance and cruise system.
基金Sponsored by the Major Program of National Natural Science Foundation of China (Grant No.60710002)the Program for Changjiang Scholars and Innovative Research Team in University
文摘To realize the stabilization and the tracking of flight control for an air-breathing hypersonic cruise vehicle, the linearization of the longitudinal model under trimmed cruise condition is processed firstly. Furthermore, the flight control problem is formulated as a robust model tracking control problem. And then, based on the robust parametric approach, eigenstructure assignment and reference model tracking theory, a parametric optimization method for robust controller design is presented. The simulation results show the effectiveness of the proposed approach.