In this paper,we give the necessary and sufficient conditions for a class of higher degree polynomial systems to have a uniform isochronous center.At the same time,we prove that for this system the composition conject...In this paper,we give the necessary and sufficient conditions for a class of higher degree polynomial systems to have a uniform isochronous center.At the same time,we prove that for this system the composition conjecture is correct.展开更多
Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation gen...Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation generation and collapse intensity depend on the pressure difference between the intermediate high-speed abrasive waterjet and the coaxial low-speed waterjet.However,the effect of the pressure of the coaxial low-speed waterjet is pending.For this purpose,the effect of low-speed waterjet pressure on rock-breaking performance at different standoff distances was experimentally investigated,and the effects of erosion time and ruby nozzle diameter on erosion performance were discussed.Finally,the micromorphology of the sandstone was observed at different locations.The results show that increased erosion time and ruby nozzle diameter can significantly improve the rock-breaking performance.At different standoff distances,the mass loss increases first and then decreases with the increase of low-speed waterjet pressure,the maximum mass loss is 10.4 g at a low-speed waterjet pressure of0.09 MPa.The surface morphology of cavitation erosion was measured using a 3D profiler,the increase in both erosion depth and surface roughness indicated a significant increase in the intensity of the shear cavitation collapse.At a low-speed waterjet pressure of 0.18 MPa,the cavitation erosion surface depth can reach 600μm with a roughness of 127μm.展开更多
In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.Ho...In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.However,the resolution of T inevitably deteriorates due to the magnetic rigidity spread of the ions,limiting the mass-resolving power.In this study,we used the betatron tunes Q(the number of betatron oscillations per revolution)of the ions and established a correlation between T and Q.From this correlation,T was transformed to correspond to a fixed Q with higher resolution.Using these transformed T values,the masses of ^(63)Ge,^(65)As,^(67)Se,and ^(71)Kr agreed well with the mass values measured using the newly developed IMS(Bρ-IMS).We also studied the systematics of Coulomb displacement energies(CDEs)and found that anomalous staggering in CDEs was eliminated using new mass values.This method of T transformation is highly effective for conventional IMS equipped with a single time-of-flight detector.展开更多
A novel technique of isochronous mass spectrometry(IMS),termed Bρ-defned IMS,was developed at the experimental cooler-storage ring CSRe in Lanzhou for the frst time.Two time-of-fight detectors were installed in a str...A novel technique of isochronous mass spectrometry(IMS),termed Bρ-defned IMS,was developed at the experimental cooler-storage ring CSRe in Lanzhou for the frst time.Two time-of-fight detectors were installed in a straight section of the CSRe,thereby enabling simultaneous measurements of the velocity and revolution time of each stored short-lived ion.This technique boosts the broadband precision,efciency,sensitivity,and accuracy of mass measurements of short-lived exotic nuclides.Using Bρ-defned IMS,the masses of^(22)Al,^(62)Ge,^(64)As,^(66)Se,and^(70)Kr were measured for the frst time,and the masses of^(65)As,^(67)Se,and other 21 nuclides were redetermined with improved accuracy.Mass data have been used in studies of relevant issues regarding nuclear structures and nuclear astrophysics.Herein,we review the development of experimental techniques and main physical results and outline plans for future experiments.展开更多
In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ...In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.展开更多
Isochronous mass spectrometry(IMS)of heavyion storage rings is a powerful tool for the mass measurements of short-lived nuclei.In IMS experiments,masses are determined through precision measurements of the revolution ...Isochronous mass spectrometry(IMS)of heavyion storage rings is a powerful tool for the mass measurements of short-lived nuclei.In IMS experiments,masses are determined through precision measurements of the revolution times of the ions stored in the ring.However,the revolution times cannot be resolved for particles with nearly the same mass-to-charge(m/q)ratios.To overcome this limitation and to extract the accurate revolution times for such pairs of ion species with very close m/q ratios,in our early work on particle identification,we analyzed the amplitudes of the timing signals from the detector based on the emission of secondary electrons.Here,the previous data analysis method is further improved by considering the signal amplitudes,detection efficiencies,and number of stored ions in the ring.A sensitive Z-dependent parameter is introduced in the data analysis,leading to a better resolution of ^(34)Ar^(18+) and ^(51)Co^(27+) with A/Z=17/9.The mean revolution times of ^(34)Ar^(18+) and ^(51)Co^(27+) are deduced,although their time difference is merely 1.8 ps.The uncorrected,overlapped peak of these ions has a full width at half maximum of 7.7 ps.The mass excess of ^(51)Co was determined to be-27;332e41T keV,which is in agreement with the previous value of-27;342e48T keV.展开更多
The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structu...The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structure first appears was determined to be u(tau) approximate to 0.19 cm/s. The mean spanwise streak spacing increases with distance from the water surface owing to merging and bursting processes, and a linear relationship describing variation of non-dimensional spacing <(<lambda>+)over bar> versus y(+) was found essentially independent of shear stress on the interface. Values of <(<lambda>+)over bar>, however, are remarkably smaller than their counterparts in the near-wall region of turbulent boundary layers. Though low-speed streaks occur randomly in time and space, the streak spacing exhibits a lognormal probability distribution behavior. A tentative explanation concerning the formation of streaky structure is suggested, and the fact that <(<lambda>+)over bar> takes rather smaller values than that in wall turbulence is briefly discussed.展开更多
The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry(PIV) measur...The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry(PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition(POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy(TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content,suggesting an increasing competition of varicose instability against sinuous instability.展开更多
The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify t...The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify the vibration characteristics of this coupled system through field tests.To this end,dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line.Firstly,the dynamic response data of the coupled system under various operating conditions were obtained.Then,the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method,indicating a good agreement between the simulation results and the measured results;the acceleration response characteristics of the coupled system were analysed in detail,and the ride quality of the vehicle was assessed by Sperling index.Finally,the frequency distribution characteristics of the coupled system were discussed.All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems.展开更多
The evolution of two spanwise-aligned low-speed streaks in a wall turbulent flow, triggered by the instability of the subharmonic varicose (SV) mode, is studied by a direct numerical simulation (DNS) method in a s...The evolution of two spanwise-aligned low-speed streaks in a wall turbulent flow, triggered by the instability of the subharmonic varicose (SV) mode, is studied by a direct numerical simulation (DNS) method in a small spatial-periodic channel. The results show that the SV low-speed streaks are self-sustained at the early stage, and then transform into subharmonic sinuous (SS) low-speed streaks. Initially, the streamwise vortex sheets are formed by shearing, and then evolve into zigzag vortex sheets due to the mutual induction. As the intensification of the SV low-speed streaks becomes prominent, the tilted streamwise vortex tubes and the V-like streamwise vortex tubes can be formed simultaneously by increasing +~. When the SV low-speed streaks break down, new zigzag streamwise vortices will be generated, thus giving birth to the next sustaining cycle of the SV low-speed streaks. When the second breakdown happens, new secondary V-like streamwise vortices instead of zigzag streamwise vortices will be generated. Because of the sweep motion of the fluid induced by the secondary V-like streamwise vortices, each decayed low-speed streak can be divided into two parts, and each part combines with the part of another streak, finally leading to the formation of SS low-speed streaks.展开更多
We propose a low-speed photonic sampling for independent high-frequency characterization of a Mach–Zehnder modulator(MZM)and a photodetector(PD)in an optical link.A low-speed mode-locked laser diode(MLLD)provides an ...We propose a low-speed photonic sampling for independent high-frequency characterization of a Mach–Zehnder modulator(MZM)and a photodetector(PD)in an optical link.A low-speed mode-locked laser diode(MLLD)provides an ultrawideband optical stimulus with scalable frequency range,working as the photonic sampling source of the link.The uneven spectrum lines of the MLLD are firstly characterized with symmetric modulation within the interesting frequency range.Then,the electro-optic modulated signals are down-converted to the first Nyquist frequency range,yielding the self-referenced extraction of modulation depth and half-wave voltage of the MZM without correcting the responsivity fluctuation of the PD in the link.Finally,the frequency responsivity of the PD is self-referenced measured under null modulation of the MZM.As frequency responses of the MZM and the PD can be independently obtained,our method allows self-referenced high-frequency measurement for a high-speed optical link.In the proof-of-concept experiment,a 96.9 MS/s MLLD is used for measuring a MZM and a PD within the frequency range up to 50 GHz.The consistency between our method and the conventional method verifies that the ultra-wideband and self-referenced high-frequency characterization of high-speed MZMs and PDs.展开更多
The evolution of low-speed streaks in the turbulent boundary layer of the minimum channel flow unit at a low Reynolds number is simulated by the direct numer- ical simulation (DNS) based on the standard Fourier-Cheb...The evolution of low-speed streaks in the turbulent boundary layer of the minimum channel flow unit at a low Reynolds number is simulated by the direct numer- ical simulation (DNS) based on the standard Fourier-Chebyshev spectral method. The subharmonic sinuous (SS) mode for two spanwise-aligned low-speed streaks is excited by imposing the initial perturbations. The possibilities and the physical realities of the turbulent sustaining in the minimal channel unit are examined. Based on such a flow field environment, the evolution of the low-speed streaks during a cycle of turbulent sus- taining, including lift-up, oscillation, and breakdown, is investigated. The development of streamwise vortices and the dynamics of vortex structures are examined. The results show that the vortices generated from the same streak are staggered along the streamwise direction, while the vortices induced by different streaks tilt toward the normal direction due to the mutual induction effect. It is the spatial variations of the streamwise vortices that cause the lift-up of the streaks. By resolving the transport dynamics of enstrophy, the strength of the vortices is found to continuously grow in the logarithmic layer through the vortex stretching mechanism during the evolution of streaks. The enhancement of the vortices contributes to the spanwise oscillation and the following breakdown of the low-speed streaks.展开更多
Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here...Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here a high-power marine 16-cylinder V-type turbocharged diesel engine is simulated using the GT-Power software.The results reveal the differences induced by different exhaust system structures,such as an 8-cylinder-inpipe exhaust system with single/double superchargers and a 4-cylinder-in-pipe exhaust system with a single supercharger.After a comparative analysis,the 8-cylinder type with double superchargers is determined to be the optimal solution,and the structure of the exhaust system is further optimized.The simulations show that the optimized maximum exhaust temperature difference among cylinders is reduced by 66%.Finally,the simulation results and the optimized performance of the designed exhaust system are verified through experiments.展开更多
The present paper presents an experimental effort on the regeneration process of two low-speed laminar streaks in a zero-pressure-gradient laminar boundary layer. Two vertical thin wires separated by a spanwise distan...The present paper presents an experimental effort on the regeneration process of two low-speed laminar streaks in a zero-pressure-gradient laminar boundary layer. Two vertical thin wires separated by a spanwise distance of 30 mm are used to introduce disturbances of two rolls of transitional Karmain vortex street to the downstream boundary layer. Both hydrogen bubble visualization and particle image velocimetry (PIV) measurement show that two lowspeed streaks are induced through leading-edge receptivity process. As these streaks develop in the downstream, two additional low-speed streaks begin to appear outboard of the flank of the original two, together with complex dynamics of streak splitting and merging. A flow pattern of four streaks aligned along the spanwise direction occurs finally in the far downstream. It is found that besides the mechanisms of streak breakdown, the streak interaction is also an important factor characterizing the instability of low speed streaks and their regeneration process.展开更多
The number of the limit cycles bifurcating in small quadratic perturbations of quadratic systems with an ischronous center is studied, it turns out that the cyclicity of the period annulus around one kind of quadratic...The number of the limit cycles bifurcating in small quadratic perturbations of quadratic systems with an ischronous center is studied, it turns out that the cyclicity of the period annulus around one kind of quadratic isochronous center is two.展开更多
In conventional isochronous mass spectrometry (IMS), single time-of-flight (TOF) method is adopted to measurethe ions' revolution times in a storage ring which can then be used to calculate the ions' masses. H...In conventional isochronous mass spectrometry (IMS), single time-of-flight (TOF) method is adopted to measurethe ions' revolution times in a storage ring which can then be used to calculate the ions' masses. However, themass-to-charge ratio (m=q) is only related to the revolution time (T) under the condition that is equal to taccording to the following equation:展开更多
Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nucle with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam sepa...Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nucle with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam separated in-ight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS.展开更多
Isochronous mass spectrometry in storage rings is a successful technique for the precision mass measurements ofthe nuclides with half-lives down to tens of microseconds[1]. Since the isochronous condition =t greatly r...Isochronous mass spectrometry in storage rings is a successful technique for the precision mass measurements ofthe nuclides with half-lives down to tens of microseconds[1]. Since the isochronous condition =t greatly reducesthe influence of the velocity difference on the ion revolution periods, the revolution period difference ΔT =T ??TRof a stored ion with respect to a reference time TR is directly related to its mass-to-charge ratio difference Δ(m=q),written in the first order as:展开更多
Until now, several isochronous mass spectrometry (IMS) experiments have been successfully performed usingvarious primary beams at the HIRFL-CSR and masses of both proton-rich and proton-deficient exotic nuclei havebee...Until now, several isochronous mass spectrometry (IMS) experiments have been successfully performed usingvarious primary beams at the HIRFL-CSR and masses of both proton-rich and proton-deficient exotic nuclei havebeen measured. In order to improve the performance of the IMS experiments and to provide a reliable tool fordesigning and preparing the future experiments, a simulation code, named SimCSR is developed.Presently, six-dimension phase-space linear transmission theory is applied to simulate the transmission of ionsin the experimental storage ring (CSRe). The basic algorithm is Bf = MBi. The Bi and Bf are six-dimensionphase-space vectors of ions at the entrance and exit of each element of the CSRe lattice, respectively. M is a6-by-6-dimension first-order transfer matrix of each element. M is calculated using formulas described in Ref.[1]. Inthe simulations, the ring lattice is considered in detail, and the same magnetic setting as in our previous experimentwith 58Ni projectile fragments[2] is considered. The ions are assumed to circulate 300 turns inside the CSRe.展开更多
Mass is one of the fundamental properties of atomic nuclei. Isochronous mass spectrometry (IMS), using astorage ring combined with an in-flight separator, has been shown to be a powerful tool for mass measurementof ex...Mass is one of the fundamental properties of atomic nuclei. Isochronous mass spectrometry (IMS), using astorage ring combined with an in-flight separator, has been shown to be a powerful tool for mass measurementof exotic nuclei[1]. Recently, masses of many proton-rich nuclides were accurately determined at the HIRFL-CSRfacility[2]. In this paper, we described the first isochronous mass measurement of neutron-rich nuclides at CSRe.This experiment was performed at the end of 2011. In the experiment, the primary beam of 86Kr28+ ions wasaccumulated and accelerated to an energy of 460.65 MeV/u in the synchrotron CSRm. The 86Kr28+ ions were fastextracted and focused on a 15 mm thick beryllium target which was placed at the entrance of the RIBLL2 (anin-flight fragment separator).展开更多
基金Supported by the National Natural Science Foundation of China(62173292,12171418).
文摘In this paper,we give the necessary and sufficient conditions for a class of higher degree polynomial systems to have a uniform isochronous center.At the same time,we prove that for this system the composition conjecture is correct.
基金financially supported by the National Natural Science Foundation of China (Nos.52175245 and 52274093)the Natural Science Foundation of Hubei Province (No.2021CFB462)the Knowledge Innovation Special Project of Wuhan (whkxjsj007)。
文摘Unsubmerged cavitating abrasive waterjet(UCAWJ)has been shown to artificially create a submerged environment that produces shear cavitation,which effectively enhances rock-breaking performance.The shear cavitation generation and collapse intensity depend on the pressure difference between the intermediate high-speed abrasive waterjet and the coaxial low-speed waterjet.However,the effect of the pressure of the coaxial low-speed waterjet is pending.For this purpose,the effect of low-speed waterjet pressure on rock-breaking performance at different standoff distances was experimentally investigated,and the effects of erosion time and ruby nozzle diameter on erosion performance were discussed.Finally,the micromorphology of the sandstone was observed at different locations.The results show that increased erosion time and ruby nozzle diameter can significantly improve the rock-breaking performance.At different standoff distances,the mass loss increases first and then decreases with the increase of low-speed waterjet pressure,the maximum mass loss is 10.4 g at a low-speed waterjet pressure of0.09 MPa.The surface morphology of cavitation erosion was measured using a 3D profiler,the increase in both erosion depth and surface roughness indicated a significant increase in the intensity of the shear cavitation collapse.At a low-speed waterjet pressure of 0.18 MPa,the cavitation erosion surface depth can reach 600μm with a roughness of 127μm.
基金supported in part by the National Key R&D Program of China (No. 2023YFA1606401)CAS Project for Young Scientists in Basic Research (No. YSBR-002)+3 种基金Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB34000000)the NSFC (Nos. 12305126, 12135017, 12121005)the support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2021419)the support from the Yong Scholar of Regional Development,CAS (No.[2023]15)
文摘In conventional isochronous mass spectrometry(IMS)performed on a storage ring,the precision of mass measurements for short-lived nuclei depends on the accurate determination of the revolution times(T)of stored ions.However,the resolution of T inevitably deteriorates due to the magnetic rigidity spread of the ions,limiting the mass-resolving power.In this study,we used the betatron tunes Q(the number of betatron oscillations per revolution)of the ions and established a correlation between T and Q.From this correlation,T was transformed to correspond to a fixed Q with higher resolution.Using these transformed T values,the masses of ^(63)Ge,^(65)As,^(67)Se,and ^(71)Kr agreed well with the mass values measured using the newly developed IMS(Bρ-IMS).We also studied the systematics of Coulomb displacement energies(CDEs)and found that anomalous staggering in CDEs was eliminated using new mass values.This method of T transformation is highly effective for conventional IMS equipped with a single time-of-flight detector.
基金National Key R&D Program of China(Grant No.2023YFA1606401)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-002)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34000000)NSFC(Grant No.12305126)。
文摘A novel technique of isochronous mass spectrometry(IMS),termed Bρ-defned IMS,was developed at the experimental cooler-storage ring CSRe in Lanzhou for the frst time.Two time-of-fight detectors were installed in a straight section of the CSRe,thereby enabling simultaneous measurements of the velocity and revolution time of each stored short-lived ion.This technique boosts the broadband precision,efciency,sensitivity,and accuracy of mass measurements of short-lived exotic nuclides.Using Bρ-defned IMS,the masses of^(22)Al,^(62)Ge,^(64)As,^(66)Se,and^(70)Kr were measured for the frst time,and the masses of^(65)As,^(67)Se,and other 21 nuclides were redetermined with improved accuracy.Mass data have been used in studies of relevant issues regarding nuclear structures and nuclear astrophysics.Herein,we review the development of experimental techniques and main physical results and outline plans for future experiments.
基金supports provided by Natural Science Foundation of Shanghai(contract No.03ZR14022)the“Tenth Five”National Key Technological Research and Development Program(contract No.2001BA803B03)National Natural Science Foundation of China(contract No.50225517)are gratefully acknowledged.
文摘In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.
基金This work was supported by the National Key R&D Program of China(Nos.2016YFA0400504 and 2018YFA0404401)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB34000000)+4 种基金the National Natural Science Foundation of China(Nos.11905261,11805032,11975280,and 11605248)the CAS "Light of West China" Program,the China Postdoctoral Science Foundation(No.2019M660250)the FRIB-CSC Fellowship,China(No.201704910964)the International Postdoctoral Exchange Fellowship Program 2017 by the Office of China Postdoctoral Council(No.60 Document of OCPC,2017)the European Research Council(ERC)under the European Union’s Horizon 2020 Research and Innovation Programme(No.682841 "ASTRUm").
文摘Isochronous mass spectrometry(IMS)of heavyion storage rings is a powerful tool for the mass measurements of short-lived nuclei.In IMS experiments,masses are determined through precision measurements of the revolution times of the ions stored in the ring.However,the revolution times cannot be resolved for particles with nearly the same mass-to-charge(m/q)ratios.To overcome this limitation and to extract the accurate revolution times for such pairs of ion species with very close m/q ratios,in our early work on particle identification,we analyzed the amplitudes of the timing signals from the detector based on the emission of secondary electrons.Here,the previous data analysis method is further improved by considering the signal amplitudes,detection efficiencies,and number of stored ions in the ring.A sensitive Z-dependent parameter is introduced in the data analysis,leading to a better resolution of ^(34)Ar^(18+) and ^(51)Co^(27+) with A/Z=17/9.The mean revolution times of ^(34)Ar^(18+) and ^(51)Co^(27+) are deduced,although their time difference is merely 1.8 ps.The uncorrected,overlapped peak of these ions has a full width at half maximum of 7.7 ps.The mass excess of ^(51)Co was determined to be-27;332e41T keV,which is in agreement with the previous value of-27;342e48T keV.
基金The project supported by the National Natural Science Foundation of China (19672070)
文摘The characteristics of low-speed fluid streaks occurring under sheared air-water interfaces were examined by means of hydrogen bubble visualization technique. A critical shear condition under which the streaky structure first appears was determined to be u(tau) approximate to 0.19 cm/s. The mean spanwise streak spacing increases with distance from the water surface owing to merging and bursting processes, and a linear relationship describing variation of non-dimensional spacing <(<lambda>+)over bar> versus y(+) was found essentially independent of shear stress on the interface. Values of <(<lambda>+)over bar>, however, are remarkably smaller than their counterparts in the near-wall region of turbulent boundary layers. Though low-speed streaks occur randomly in time and space, the streak spacing exhibits a lognormal probability distribution behavior. A tentative explanation concerning the formation of streaky structure is suggested, and the fact that <(<lambda>+)over bar> takes rather smaller values than that in wall turbulence is briefly discussed.
基金supported by the National Natural Science Foundation of China (Grants 11372001,11672020,and 11490552)the Fundamental Research Funds for the Central Universities of China (Grant YWF-16-JCTD-A-05)
文摘The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry(PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition(POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy(TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content,suggesting an increasing competition of varicose instability against sinuous instability.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51875483)the Independently Funded Research Project of State Key Laboratory of Traction Power(Grant Nos.2020TPL-T01 and 2020TPL-T04).
文摘The steel turnout is one of the key components in the medium–low-speed maglev line system.However,the vehicle under active control is prone to vehicle–turnout coupled vibration,and thus,it is necessary to identify the vibration characteristics of this coupled system through field tests.To this end,dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line.Firstly,the dynamic response data of the coupled system under various operating conditions were obtained.Then,the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method,indicating a good agreement between the simulation results and the measured results;the acceleration response characteristics of the coupled system were analysed in detail,and the ride quality of the vehicle was assessed by Sperling index.Finally,the frequency distribution characteristics of the coupled system were discussed.All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems.
基金supported by the National Natural Science Foundation of China(Nos.11372140 and11202102)the Innovation Project for College Graduates of Jiangsu Province(No.CXZZ13-0189)
文摘The evolution of two spanwise-aligned low-speed streaks in a wall turbulent flow, triggered by the instability of the subharmonic varicose (SV) mode, is studied by a direct numerical simulation (DNS) method in a small spatial-periodic channel. The results show that the SV low-speed streaks are self-sustained at the early stage, and then transform into subharmonic sinuous (SS) low-speed streaks. Initially, the streamwise vortex sheets are formed by shearing, and then evolve into zigzag vortex sheets due to the mutual induction. As the intensification of the SV low-speed streaks becomes prominent, the tilted streamwise vortex tubes and the V-like streamwise vortex tubes can be formed simultaneously by increasing +~. When the SV low-speed streaks break down, new zigzag streamwise vortices will be generated, thus giving birth to the next sustaining cycle of the SV low-speed streaks. When the second breakdown happens, new secondary V-like streamwise vortices instead of zigzag streamwise vortices will be generated. Because of the sweep motion of the fluid induced by the secondary V-like streamwise vortices, each decayed low-speed streak can be divided into two parts, and each part combines with the part of another streak, finally leading to the formation of SS low-speed streaks.
基金the National Key Research and Development Program of China(2019YFB2203500)the National Natural Science Foundation of China(NSFC)(61927821)+1 种基金the Joint Research Fund of Ministry of Education of China(6141A02022436)the Fundamental Research Funds for the Central Universities(ZYGX2019Z011).
文摘We propose a low-speed photonic sampling for independent high-frequency characterization of a Mach–Zehnder modulator(MZM)and a photodetector(PD)in an optical link.A low-speed mode-locked laser diode(MLLD)provides an ultrawideband optical stimulus with scalable frequency range,working as the photonic sampling source of the link.The uneven spectrum lines of the MLLD are firstly characterized with symmetric modulation within the interesting frequency range.Then,the electro-optic modulated signals are down-converted to the first Nyquist frequency range,yielding the self-referenced extraction of modulation depth and half-wave voltage of the MZM without correcting the responsivity fluctuation of the PD in the link.Finally,the frequency responsivity of the PD is self-referenced measured under null modulation of the MZM.As frequency responses of the MZM and the PD can be independently obtained,our method allows self-referenced high-frequency measurement for a high-speed optical link.In the proof-of-concept experiment,a 96.9 MS/s MLLD is used for measuring a MZM and a PD within the frequency range up to 50 GHz.The consistency between our method and the conventional method verifies that the ultra-wideband and self-referenced high-frequency characterization of high-speed MZMs and PDs.
基金supported by the National Natural Science Foundation of China(No.11202102)the Innovation Project for College Graduates of Jiangsu Province(No.CXZZ13_0189)the Specialized Research Fund for Doctoral Program of Higher Education of China(No.20123219120050)
文摘The evolution of low-speed streaks in the turbulent boundary layer of the minimum channel flow unit at a low Reynolds number is simulated by the direct numer- ical simulation (DNS) based on the standard Fourier-Chebyshev spectral method. The subharmonic sinuous (SS) mode for two spanwise-aligned low-speed streaks is excited by imposing the initial perturbations. The possibilities and the physical realities of the turbulent sustaining in the minimal channel unit are examined. Based on such a flow field environment, the evolution of the low-speed streaks during a cycle of turbulent sus- taining, including lift-up, oscillation, and breakdown, is investigated. The development of streamwise vortices and the dynamics of vortex structures are examined. The results show that the vortices generated from the same streak are staggered along the streamwise direction, while the vortices induced by different streaks tilt toward the normal direction due to the mutual induction effect. It is the spatial variations of the streamwise vortices that cause the lift-up of the streaks. By resolving the transport dynamics of enstrophy, the strength of the vortices is found to continuously grow in the logarithmic layer through the vortex stretching mechanism during the evolution of streaks. The enhancement of the vortices contributes to the spanwise oscillation and the following breakdown of the low-speed streaks.
基金the High-Tech Ship Scientific Research Project[MC-201501-D01-01].
文摘Proper design of exhaust systems in marine high-power turbocharged diesel engines can contribute to improve the low-speed performance of these engines and make the working conditions of the cylinders more uniform.Here a high-power marine 16-cylinder V-type turbocharged diesel engine is simulated using the GT-Power software.The results reveal the differences induced by different exhaust system structures,such as an 8-cylinder-inpipe exhaust system with single/double superchargers and a 4-cylinder-in-pipe exhaust system with a single supercharger.After a comparative analysis,the 8-cylinder type with double superchargers is determined to be the optimal solution,and the structure of the exhaust system is further optimized.The simulations show that the optimized maximum exhaust temperature difference among cylinders is reduced by 66%.Finally,the simulation results and the optimized performance of the designed exhaust system are verified through experiments.
基金supported by the National Natural Science Foundation of China(11372001 and 11327202)
文摘The present paper presents an experimental effort on the regeneration process of two low-speed laminar streaks in a zero-pressure-gradient laminar boundary layer. Two vertical thin wires separated by a spanwise distance of 30 mm are used to introduce disturbances of two rolls of transitional Karmain vortex street to the downstream boundary layer. Both hydrogen bubble visualization and particle image velocimetry (PIV) measurement show that two lowspeed streaks are induced through leading-edge receptivity process. As these streaks develop in the downstream, two additional low-speed streaks begin to appear outboard of the flank of the original two, together with complex dynamics of streak splitting and merging. A flow pattern of four streaks aligned along the spanwise direction occurs finally in the far downstream. It is found that besides the mechanisms of streak breakdown, the streak interaction is also an important factor characterizing the instability of low speed streaks and their regeneration process.
基金Supported by the National Natural Science Foundation of China( No.195 310 70 ) and Natural Science Fundation ofHubei Province( No.98J12 1)
文摘The number of the limit cycles bifurcating in small quadratic perturbations of quadratic systems with an ischronous center is studied, it turns out that the cyclicity of the period annulus around one kind of quadratic isochronous center is two.
文摘In conventional isochronous mass spectrometry (IMS), single time-of-flight (TOF) method is adopted to measurethe ions' revolution times in a storage ring which can then be used to calculate the ions' masses. However, themass-to-charge ratio (m=q) is only related to the revolution time (T) under the condition that is equal to taccording to the following equation:
文摘Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nucle with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam separated in-ight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS.
文摘Isochronous mass spectrometry in storage rings is a successful technique for the precision mass measurements ofthe nuclides with half-lives down to tens of microseconds[1]. Since the isochronous condition =t greatly reducesthe influence of the velocity difference on the ion revolution periods, the revolution period difference ΔT =T ??TRof a stored ion with respect to a reference time TR is directly related to its mass-to-charge ratio difference Δ(m=q),written in the first order as:
文摘Until now, several isochronous mass spectrometry (IMS) experiments have been successfully performed usingvarious primary beams at the HIRFL-CSR and masses of both proton-rich and proton-deficient exotic nuclei havebeen measured. In order to improve the performance of the IMS experiments and to provide a reliable tool fordesigning and preparing the future experiments, a simulation code, named SimCSR is developed.Presently, six-dimension phase-space linear transmission theory is applied to simulate the transmission of ionsin the experimental storage ring (CSRe). The basic algorithm is Bf = MBi. The Bi and Bf are six-dimensionphase-space vectors of ions at the entrance and exit of each element of the CSRe lattice, respectively. M is a6-by-6-dimension first-order transfer matrix of each element. M is calculated using formulas described in Ref.[1]. Inthe simulations, the ring lattice is considered in detail, and the same magnetic setting as in our previous experimentwith 58Ni projectile fragments[2] is considered. The ions are assumed to circulate 300 turns inside the CSRe.
文摘Mass is one of the fundamental properties of atomic nuclei. Isochronous mass spectrometry (IMS), using astorage ring combined with an in-flight separator, has been shown to be a powerful tool for mass measurementof exotic nuclei[1]. Recently, masses of many proton-rich nuclides were accurately determined at the HIRFL-CSRfacility[2]. In this paper, we described the first isochronous mass measurement of neutron-rich nuclides at CSRe.This experiment was performed at the end of 2011. In the experiment, the primary beam of 86Kr28+ ions wasaccumulated and accelerated to an energy of 460.65 MeV/u in the synchrotron CSRm. The 86Kr28+ ions were fastextracted and focused on a 15 mm thick beryllium target which was placed at the entrance of the RIBLL2 (anin-flight fragment separator).