To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accura...To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accurate estimation to a sea surface distribution and a fine designed CFAR algorithm.First,a novel nonparametric sea surface distribution estimation method is developed based on n-order Bézier curve.To estimate the sea surface distribution using n-order Bézier curve,an explicit analytical solution is derived based on a least square optimization,and the optimal selection also is presented to two essential parameters,the order n of Bézier curve and the number m of sample points.Next,to validate the ship detection performance of the estimated sea surface distribution,the estimated sea surface distribution by n-order Bézier curve is combined with a cell averaging CFAR(CA-CFAR).To eliminate the possible interfering ship targets in background window,an improved automatic censoring method is applied.Comprehensive experiments prove that in terms of sea surface estimation performance,the proposed method is as good as a traditional nonparametric Parzen window kernel method,and in most cases,outperforms two widely used parametric methods,K and G0 models.In terms of computation speed,a major advantage of the proposed estimation method is the time consuming only depended on the number m of sample points while independent of imagery size,which makes it can achieve a significant speed improvement to the Parzen window kernel method,and in some cases,it is even faster than two parametric methods.In terms of ship detection performance,the experiments show that the ship detector which constructed by the proposed sea surface distribution model and the given CA-CFAR algorithm has wide adaptability to different SAR sensors,resolutions and sea surface homogeneities and obtains a leading performance on the test dataset.展开更多
The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plan...The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.展开更多
This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and divi...This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications.展开更多
Knowledge of the surface ocean dynamics and the underlying controlling mechanisms is critical to understand the natural variability of the ocean and to predict its future response to climate change.In this paper,we hi...Knowledge of the surface ocean dynamics and the underlying controlling mechanisms is critical to understand the natural variability of the ocean and to predict its future response to climate change.In this paper,we highlight the potential use of Volunteer Observing Ship(VOS),as carrier for automatic underway measuring system and as platform for sample collection,to enhance the observing capacity for the surface ocean.We review the concept,history,present status and future development of the VOS-based in situ surface ocean observation.The successes of various VOS projects demonstrate that,along with the rapid advancing sensor techniques,VOS is able to improve the temporal resolution and spatial coverage of the surface ocean observation in a highly cost-effective manner.A sustained and efficient marine monitoring system in the future should integrate the advantages of various observing platforms including VOS.展开更多
Because a ship model surface (SMS) is a large double-curved 3-D surface,the machining efficiency of the cur- rent handcraft manufacturing method are very low,and the precision is difficult to control also.In order to ...Because a ship model surface (SMS) is a large double-curved 3-D surface,the machining efficiency of the cur- rent handcraft manufacturing method are very low,and the precision is difficult to control also.In order to greatly improve the machining efficiency and precision of SMS,based on the CAD/CAM/CNC technology,this paper proposed a model of SMS digi- tal manufacturing system,which is composed of five functional modules (preprocess module,CAD module,CAM module,post- process module and CNC module),and a twin-skeg SMS as an example,the key technologies & design principle of the nodtules were investigated also Based on the above research works,the first set of 4-axis SMS Digital Manufacturing System in China has been successfully developed,which can reduce the machining time of the twin-skeg SMS from 30 working days needed for the cur- rent handcrafting manufacturing method to 8 hours now,and which can control more effectively the precision of SMS also.展开更多
A real free surface boundary condition,taking the viscous effects and surface tension into account,is applied to the nonlinear calculation of wave making resistance.It may provide more information about the character ...A real free surface boundary condition,taking the viscous effects and surface tension into account,is applied to the nonlinear calculation of wave making resistance.It may provide more information about the character of the nonlinear ship wave and be helpful to improving the stability,convergence and local wave profile in potential calculation of the nonlinear ship wave.The wave making calculations for Series 60 are presented.展开更多
We consider the problem of a ship advancing in waves. In this method, the zone of free surface in the vicinity of body is discretized. On the discretized surface, the first-order and second-order derivatives of ship w...We consider the problem of a ship advancing in waves. In this method, the zone of free surface in the vicinity of body is discretized. On the discretized surface, the first-order and second-order derivatives of ship waves are represented by the B-Spline formulae. Different ship waves are approximated by cubic B-spline and the first and second order derivates of incident waves are calculated and compared with analytical value. It approves that this numerical method has sufficient accuracy and can be also applied to approximate the velocity potential on the free surface.展开更多
Recently,computational fluid dynamics(CFD)approaches have been effectively used by researchers to calculate the resistance characteristics of ships that have rough outer surfaces.These approaches are mainly based on m...Recently,computational fluid dynamics(CFD)approaches have been effectively used by researchers to calculate the resistance characteristics of ships that have rough outer surfaces.These approaches are mainly based on modifying wall functions using experimentally pre-determined roughness functions.Although several recent studies have shown that CFD can be an effective tool to calculate resistance components of ships for different roughness conditions,most of these studies were performed using the same ship geometry(KRISO Container Ship).Thus,the effect of ship geometry on the resistance characteristics of rough hull surfaces is worth investigating.In this study,viscous resistance components of four different ships are calculated for different roughness conditions.First,flat plate simulations are performed using a previous experimental study for comparison purposes.Then,the viscous resistance components of three-dimensional hulls are calculated.All simulations are performed using two different turbulence models to investigate the effect of the turbulence model on the results.An examination of the distributions of the local skin friction coefficients of the DTMB 5415 and Series 60 showed that the plumpness of the bow form has a significant effect on the increase in frictional resistance with increasing roughness.Another significant finding of the study is that viscous pressure resistance is directly affected by the surface roughness.For all geometries,viscous pressure resistances showed a significant increase for highly rough surfaces.展开更多
In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying dist...In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying disturbance acting on SESs due to waves.Then,based on the disturbance,a slide mode controller was designed to minimize the magnitude of SES's heave motion position.It was theoretically proved that the designed sliding mode controller with the disturbance observer could guarantee the stability of the closed-loop heave motion control system of SESs.Simulations on a Norwegian Navy's SES were carried out and the simulation results illustrated the effectiveness of the proposed controller with the disturbance observer.展开更多
The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that ope...The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.展开更多
Following developments in artificial intelligence and big data technology,the level of intelligence in intelligent vessels has been improved.Intelligent vessels are being developed into unmanned surface vehicles(USVs)...Following developments in artificial intelligence and big data technology,the level of intelligence in intelligent vessels has been improved.Intelligent vessels are being developed into unmanned surface vehicles(USVs),which have widely interested scholars in the shipping industry due to their safety,high efficiency,and energy-saving qualities.Considering the current development of USVs,the types of USVs and applications domestically and internationally are being investigated.USVs emerged with technological developments and their characteristics show some differences from traditional vessels,which brings some problems and advantages for their application.Certain maritime regulations are not applicable to USVs and must be changed.The key technologies in the current development of USVs are being investigated.While the level of intelligence is improving,the protection of cargo cannot be neglected.An innovative approach to the internal structure of USVs is proposed,where the inner hull can automatically recover its original state in case of outer hull tilting.Finally,we summarize the development status of USVs,which are an inevitable direction of development in the marine field.展开更多
Based on the potential flow theory of water waves, the interaction mechanism between the free_surface and internal waves generated by a moving point source in the lower layer of a two_layer fluid was studied. By virtu...Based on the potential flow theory of water waves, the interaction mechanism between the free_surface and internal waves generated by a moving point source in the lower layer of a two_layer fluid was studied. By virtue of the method of Green's function, the properties of the divergence field at the free surface were obtained, which plays an important role in the SAR (Synthetic Aperture Radar) image. It is shown that the coupling interaction between the surface_wave mode and internal_wave mode must be taken into account for the cases of large density difference between two layers, the source approaching to the pynocline and the total Froude number Fr close to the critical number Fr 2. The theoretical analysis is qualitatively consistent with the experimental results presented by Ma Hui_yang.展开更多
Adopting complex number theory, a mathematic model of Green function is built for two dimension free water surface, and an analytic expression of Green function is obtained by introducing two parameters. The intrinsic...Adopting complex number theory, a mathematic model of Green function is built for two dimension free water surface, and an analytic expression of Green function is obtained by introducing two parameters. The intrinsic properties of Green function are discussed on vertical line and horizontal line. At last, the derivation expression of Green function is obtained from the formula of Green function.展开更多
In this paper a submerged horseshoe vortex under a free surface is discussed and the algebraic expression of the wave elevation is obtained. From this expression, some characteristics of the ship wave are described. T...In this paper a submerged horseshoe vortex under a free surface is discussed and the algebraic expression of the wave elevation is obtained. From this expression, some characteristics of the ship wave are described. There exists a smooth region nearθ=0°, but when the uniform stream passes the other singularities (source, sink, doublet, etc.) there is no smooth region. The mechanism of synthetic aperture radar (SAR) images of the narrow ship wakes is also explained.展开更多
On the basis of an understanding of the ocean current produced under the combined forces of wind stress over the sea surface and horizontal pressure gradient force caused by the uneven distribution of seawater density...On the basis of an understanding of the ocean current produced under the combined forces of wind stress over the sea surface and horizontal pressure gradient force caused by the uneven distribution of seawater density and the elevation of sea surface , we obtained the unsteady analytic solution of the variation with time of ocean surface current velocity corresponding to the time variation of the above two forces , and the unsteady analytic solution for variation of seawater density with time by considering only the vertical turbulence . To meet different needs, the above solutions may be written in two forms for short and long time predictions . After some simplification the analytic solution was used to predict surface ocean current velocity for meteorological -navigation in the North Pacific . The monthly average current field was first obtained to get the necessary parameters for selecting the initial shipping route in the North Pacific and Bohai and Yellow Seas . The wind current field was then展开更多
A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator co...A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator combined with high-pressure flexible bladder was proposed,and the numerical model of the loading device based on flexible bladder was established.The design and analysis method of high-pressure flexible bladder based on aramid-fiber reinforced thermoplastic polyurethane was proposed to break through the surface pressure loading technology of ship structures.The surface pressure loading system based on flexible bladder was developed.The ultimate strength verification test of the box girder under the combined action of bending moment and pressure was carried out to systematically verify the feasibility and applicability of the loading system.The results show that the surface pressure loading technology can be used well for applying uniform pressure to ship structures.Compared with the traditional surface loading methods,the improved device can be applied with horizontal constant pressure load,with rapid response and safe process,and the pressure load is always stable with the increase of the bending moment load during the test.The requirement for uniform loading in the comprehensive strength test of large structural models is satisfied and the accuracy of the test results is improved by this system.展开更多
In many existing works,the seakeeping motions and air dynamics of a surface effect ship(SES)were assumed to be linear under small-amplitude waves(wave amplitude to wave length ratio≤5%)to en-hance the computational e...In many existing works,the seakeeping motions and air dynamics of a surface effect ship(SES)were assumed to be linear under small-amplitude waves(wave amplitude to wave length ratio≤5%)to en-hance the computational efficiency.However,according to SES model test results,it was found that even in small-amplitude waves,the fluctuating air cushion pressure shows significantly nonlinear effects.To precisely reveal this distinctive feature,the origin of nonlinearity was carefully investigated and the air leakage was considered as the main source of nonlinearity based on mathematical analysis in this paper.The reason is that the variance of clearance height under seals is comparable to the clearance height at equilibrium state in small-amplitude waves,which makes the air leakage area intermittently equal to zero without any harmonic variance.Therefore,an efficient partial nonlinear numerical model for the SES dynamics was proposed by combining a linear frequency-domain hydrodynamic model based on the ef-ficient 2.5D methods with a nonlinear time-domain air dynamic model.The nonlinear parts of numerical results from the partial nonlinear model,including the fluctuating air pressure and midship accelerations,agree well with experimental results.The results demonstrate the effectiveness of the partial nonlinear model on the SES seakeeping performance prediction,and confirm that its nonlinearity mainly originates from the air leakage.展开更多
The hydroelastic analysis and sonoelastic analysis methods are incorporated with the Green's function of the Pekeris ocean hydro-acoustic waveguide model to produce a three-dimensional sonoelastic analysis method for...The hydroelastic analysis and sonoelastic analysis methods are incorporated with the Green's function of the Pekeris ocean hydro-acoustic waveguide model to produce a three-dimensional sonoelastic analysis method for ships in the ocean hydro-acoustic environment. The seabed condition is represented by a penetrable boundary of prescribed density and sound speed. This method is employed in this paper to predict the vibration and acoustic radiation of a 1 500 t Small Water Area Twin Hull (SWATH) ship in shallow sea acoustic environment. The wet resonant frequencies and radiation sound source levels are predicted and compared with the measured results of the ship in trial.展开更多
A new 3D layout algorithm to lay rectangular tiles on the 3D hull surface model is proposed to improve the algorithm performance in accelerating layout process and enhancing design accuracy. Three times optimizations ...A new 3D layout algorithm to lay rectangular tiles on the 3D hull surface model is proposed to improve the algorithm performance in accelerating layout process and enhancing design accuracy. Three times optimizations are carried out upon the original basic algorithm, namely optimization of calculating range, separation of surface flattening computation from laying computation, and optimization of interior point distribution. By testing, the generated surface layout drawing by the refined system is fairly applicable to guide the actual tiles' coating process.展开更多
基金The National Natural Science Foundation of China under contract No.61471024the National Marine Technology Program for Public Welfare under contract No.201505002-1the Beijing Higher Education Young Elite Teacher Project under contract No.YETP0514
文摘To dates,most ship detection approaches for single-pol synthetic aperture radar(SAR) imagery try to ensure a constant false-alarm rate(CFAR).A high performance ship detector relies on two key components:an accurate estimation to a sea surface distribution and a fine designed CFAR algorithm.First,a novel nonparametric sea surface distribution estimation method is developed based on n-order Bézier curve.To estimate the sea surface distribution using n-order Bézier curve,an explicit analytical solution is derived based on a least square optimization,and the optimal selection also is presented to two essential parameters,the order n of Bézier curve and the number m of sample points.Next,to validate the ship detection performance of the estimated sea surface distribution,the estimated sea surface distribution by n-order Bézier curve is combined with a cell averaging CFAR(CA-CFAR).To eliminate the possible interfering ship targets in background window,an improved automatic censoring method is applied.Comprehensive experiments prove that in terms of sea surface estimation performance,the proposed method is as good as a traditional nonparametric Parzen window kernel method,and in most cases,outperforms two widely used parametric methods,K and G0 models.In terms of computation speed,a major advantage of the proposed estimation method is the time consuming only depended on the number m of sample points while independent of imagery size,which makes it can achieve a significant speed improvement to the Parzen window kernel method,and in some cases,it is even faster than two parametric methods.In terms of ship detection performance,the experiments show that the ship detector which constructed by the proposed sea surface distribution model and the given CA-CFAR algorithm has wide adaptability to different SAR sensors,resolutions and sea surface homogeneities and obtains a leading performance on the test dataset.
基金Supported by Hi -tech Research and Development Program of China(No. 2001AA421200).
文摘The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.
文摘This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications.
基金The National Natural Science Foundation of China under contract No.41506090the National Key Research and Development Program of China under contract No.2016YFA0601400the Key Laboratory of Global Change and Marine-Atmospheric Chemistry under contract No.GCMAC1408
文摘Knowledge of the surface ocean dynamics and the underlying controlling mechanisms is critical to understand the natural variability of the ocean and to predict its future response to climate change.In this paper,we highlight the potential use of Volunteer Observing Ship(VOS),as carrier for automatic underway measuring system and as platform for sample collection,to enhance the observing capacity for the surface ocean.We review the concept,history,present status and future development of the VOS-based in situ surface ocean observation.The successes of various VOS projects demonstrate that,along with the rapid advancing sensor techniques,VOS is able to improve the temporal resolution and spatial coverage of the surface ocean observation in a highly cost-effective manner.A sustained and efficient marine monitoring system in the future should integrate the advantages of various observing platforms including VOS.
文摘Because a ship model surface (SMS) is a large double-curved 3-D surface,the machining efficiency of the cur- rent handcraft manufacturing method are very low,and the precision is difficult to control also.In order to greatly improve the machining efficiency and precision of SMS,based on the CAD/CAM/CNC technology,this paper proposed a model of SMS digi- tal manufacturing system,which is composed of five functional modules (preprocess module,CAD module,CAM module,post- process module and CNC module),and a twin-skeg SMS as an example,the key technologies & design principle of the nodtules were investigated also Based on the above research works,the first set of 4-axis SMS Digital Manufacturing System in China has been successfully developed,which can reduce the machining time of the twin-skeg SMS from 30 working days needed for the cur- rent handcrafting manufacturing method to 8 hours now,and which can control more effectively the precision of SMS also.
文摘A real free surface boundary condition,taking the viscous effects and surface tension into account,is applied to the nonlinear calculation of wave making resistance.It may provide more information about the character of the nonlinear ship wave and be helpful to improving the stability,convergence and local wave profile in potential calculation of the nonlinear ship wave.The wave making calculations for Series 60 are presented.
文摘We consider the problem of a ship advancing in waves. In this method, the zone of free surface in the vicinity of body is discretized. On the discretized surface, the first-order and second-order derivatives of ship waves are represented by the B-Spline formulae. Different ship waves are approximated by cubic B-spline and the first and second order derivates of incident waves are calculated and compared with analytical value. It approves that this numerical method has sufficient accuracy and can be also applied to approximate the velocity potential on the free surface.
文摘Recently,computational fluid dynamics(CFD)approaches have been effectively used by researchers to calculate the resistance characteristics of ships that have rough outer surfaces.These approaches are mainly based on modifying wall functions using experimentally pre-determined roughness functions.Although several recent studies have shown that CFD can be an effective tool to calculate resistance components of ships for different roughness conditions,most of these studies were performed using the same ship geometry(KRISO Container Ship).Thus,the effect of ship geometry on the resistance characteristics of rough hull surfaces is worth investigating.In this study,viscous resistance components of four different ships are calculated for different roughness conditions.First,flat plate simulations are performed using a previous experimental study for comparison purposes.Then,the viscous resistance components of three-dimensional hulls are calculated.All simulations are performed using two different turbulence models to investigate the effect of the turbulence model on the results.An examination of the distributions of the local skin friction coefficients of the DTMB 5415 and Series 60 showed that the plumpness of the bow form has a significant effect on the increase in frictional resistance with increasing roughness.Another significant finding of the study is that viscous pressure resistance is directly affected by the surface roughness.For all geometries,viscous pressure resistances showed a significant increase for highly rough surfaces.
基金National Natural Science Foundations of China(Nos.51579026,51079013)Program for Excellent Talents in Universities of Liaoning Province,China(No.LR2015007)+1 种基金Project of Resource and Social Security of Ministry of Human Province,ChinaFundamental Research Funds for the Central Universities,China(No.3132016020)
文摘In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying disturbance acting on SESs due to waves.Then,based on the disturbance,a slide mode controller was designed to minimize the magnitude of SES's heave motion position.It was theoretically proved that the designed sliding mode controller with the disturbance observer could guarantee the stability of the closed-loop heave motion control system of SESs.Simulations on a Norwegian Navy's SES were carried out and the simulation results illustrated the effectiveness of the proposed controller with the disturbance observer.
基金Research Fund from Science and Technology on Underwater Vehicle Laboratory
文摘The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.
基金Shanghai High-level Local University Innovation Team(Maritime Safety&Technical Support)the National Natural Science Foundation of China (Grant No. 42176217)
文摘Following developments in artificial intelligence and big data technology,the level of intelligence in intelligent vessels has been improved.Intelligent vessels are being developed into unmanned surface vehicles(USVs),which have widely interested scholars in the shipping industry due to their safety,high efficiency,and energy-saving qualities.Considering the current development of USVs,the types of USVs and applications domestically and internationally are being investigated.USVs emerged with technological developments and their characteristics show some differences from traditional vessels,which brings some problems and advantages for their application.Certain maritime regulations are not applicable to USVs and must be changed.The key technologies in the current development of USVs are being investigated.While the level of intelligence is improving,the protection of cargo cannot be neglected.An innovative approach to the internal structure of USVs is proposed,where the inner hull can automatically recover its original state in case of outer hull tilting.Finally,we summarize the development status of USVs,which are an inevitable direction of development in the marine field.
文摘Based on the potential flow theory of water waves, the interaction mechanism between the free_surface and internal waves generated by a moving point source in the lower layer of a two_layer fluid was studied. By virtue of the method of Green's function, the properties of the divergence field at the free surface were obtained, which plays an important role in the SAR (Synthetic Aperture Radar) image. It is shown that the coupling interaction between the surface_wave mode and internal_wave mode must be taken into account for the cases of large density difference between two layers, the source approaching to the pynocline and the total Froude number Fr close to the critical number Fr 2. The theoretical analysis is qualitatively consistent with the experimental results presented by Ma Hui_yang.
文摘Adopting complex number theory, a mathematic model of Green function is built for two dimension free water surface, and an analytic expression of Green function is obtained by introducing two parameters. The intrinsic properties of Green function are discussed on vertical line and horizontal line. At last, the derivation expression of Green function is obtained from the formula of Green function.
基金Project supported by the National Natural Science Foundation of China (Grant No 10372025) and the National Key Basic Research Special Foundation of China (Grant No 2001CB309400).
文摘In this paper a submerged horseshoe vortex under a free surface is discussed and the algebraic expression of the wave elevation is obtained. From this expression, some characteristics of the ship wave are described. There exists a smooth region nearθ=0°, but when the uniform stream passes the other singularities (source, sink, doublet, etc.) there is no smooth region. The mechanism of synthetic aperture radar (SAR) images of the narrow ship wakes is also explained.
文摘On the basis of an understanding of the ocean current produced under the combined forces of wind stress over the sea surface and horizontal pressure gradient force caused by the uneven distribution of seawater density and the elevation of sea surface , we obtained the unsteady analytic solution of the variation with time of ocean surface current velocity corresponding to the time variation of the above two forces , and the unsteady analytic solution for variation of seawater density with time by considering only the vertical turbulence . To meet different needs, the above solutions may be written in two forms for short and long time predictions . After some simplification the analytic solution was used to predict surface ocean current velocity for meteorological -navigation in the North Pacific . The monthly average current field was first obtained to get the necessary parameters for selecting the initial shipping route in the North Pacific and Bohai and Yellow Seas . The wind current field was then
文摘A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator combined with high-pressure flexible bladder was proposed,and the numerical model of the loading device based on flexible bladder was established.The design and analysis method of high-pressure flexible bladder based on aramid-fiber reinforced thermoplastic polyurethane was proposed to break through the surface pressure loading technology of ship structures.The surface pressure loading system based on flexible bladder was developed.The ultimate strength verification test of the box girder under the combined action of bending moment and pressure was carried out to systematically verify the feasibility and applicability of the loading system.The results show that the surface pressure loading technology can be used well for applying uniform pressure to ship structures.Compared with the traditional surface loading methods,the improved device can be applied with horizontal constant pressure load,with rapid response and safe process,and the pressure load is always stable with the increase of the bending moment load during the test.The requirement for uniform loading in the comprehensive strength test of large structural models is satisfied and the accuracy of the test results is improved by this system.
基金supported by the National Natural Science Foundation of China(Grant no.52271339,no.52171289 and no.U22A2012)Natural Science Foundation of Guangdong Province,China(2021A1515011771).
文摘In many existing works,the seakeeping motions and air dynamics of a surface effect ship(SES)were assumed to be linear under small-amplitude waves(wave amplitude to wave length ratio≤5%)to en-hance the computational efficiency.However,according to SES model test results,it was found that even in small-amplitude waves,the fluctuating air cushion pressure shows significantly nonlinear effects.To precisely reveal this distinctive feature,the origin of nonlinearity was carefully investigated and the air leakage was considered as the main source of nonlinearity based on mathematical analysis in this paper.The reason is that the variance of clearance height under seals is comparable to the clearance height at equilibrium state in small-amplitude waves,which makes the air leakage area intermittently equal to zero without any harmonic variance.Therefore,an efficient partial nonlinear numerical model for the SES dynamics was proposed by combining a linear frequency-domain hydrodynamic model based on the ef-ficient 2.5D methods with a nonlinear time-domain air dynamic model.The nonlinear parts of numerical results from the partial nonlinear model,including the fluctuating air pressure and midship accelerations,agree well with experimental results.The results demonstrate the effectiveness of the partial nonlinear model on the SES seakeeping performance prediction,and confirm that its nonlinearity mainly originates from the air leakage.
文摘The hydroelastic analysis and sonoelastic analysis methods are incorporated with the Green's function of the Pekeris ocean hydro-acoustic waveguide model to produce a three-dimensional sonoelastic analysis method for ships in the ocean hydro-acoustic environment. The seabed condition is represented by a penetrable boundary of prescribed density and sound speed. This method is employed in this paper to predict the vibration and acoustic radiation of a 1 500 t Small Water Area Twin Hull (SWATH) ship in shallow sea acoustic environment. The wet resonant frequencies and radiation sound source levels are predicted and compared with the measured results of the ship in trial.
基金Supported by the Fundamental Research and Application Fund for Ship Industry (04J1.13.3)
文摘A new 3D layout algorithm to lay rectangular tiles on the 3D hull surface model is proposed to improve the algorithm performance in accelerating layout process and enhancing design accuracy. Three times optimizations are carried out upon the original basic algorithm, namely optimization of calculating range, separation of surface flattening computation from laying computation, and optimization of interior point distribution. By testing, the generated surface layout drawing by the refined system is fairly applicable to guide the actual tiles' coating process.