期刊文献+
共找到295,519篇文章
< 1 2 250 >
每页显示 20 50 100
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
1
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:2
2
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Low-temperature characteristicsof rubbers and performance testsof type 120 emergencyvalve diaphragms 被引量:1
3
作者 Ming Gao Anhui Pan +5 位作者 Yi Huang Jiaqi Wang Yan Zhang Xiao Xie Huanre Han Yinghua Jia 《Railway Sciences》 2024年第1期47-58,共12页
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista... Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms. 展开更多
关键词 Natural rubber Chloroprene rubber low-temperature characteristic 120 emergency valve DIAPHRAGM
下载PDF
Advances in sodium-ion batteries at low-temperature: Challenges and strategies
4
作者 Haoran Bai Xiaohui Zhu +3 位作者 Huaisheng Ao Guangyu He Hai Xiao Yinjuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期518-539,I0012,共23页
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h... With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs. 展开更多
关键词 low-temperature Sodium-ion batteries Reaction kinetics Cycle stability Safety concerns of Sodium-ion batteries
下载PDF
Temperature inversion enables superior stability for low-temperature Zn-ion batteries
5
作者 Fu-Da Yu Zhe-Jian Yi +10 位作者 Rui-Yang Li Wei-Hao Lin Jie Chen Xiao-Yue Chen Yi-Ming Xie Ji-Huai Wu Zhang Lan Lan-Fang Que Bao-Sheng Liu Hao Luo Zhen-Bo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期245-253,共9页
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ... It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems. 展开更多
关键词 Aqueous Zn-ion batteries low-temperature performance Opposite temperature dependence Zndendrite growth Vanadium dissolution
下载PDF
Thermal pretreatment of willow branches impacts yield and pore development of activated carbon in subsequent activation with ZnCl_(2) via modifying cellulose structure
6
作者 Linghui Kong Chao Li +7 位作者 Runxing Sun Shu Zhang Yi Wang Jun Xiang Song Hu Dong Wang Chuanjun Leng Xun Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期227-237,共11页
Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce d... Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280. 展开更多
关键词 Thermal pretreatment activation with ZnCl_(2) Willow branch activated carbon Biochar
下载PDF
Acid mine drainage activation mechanism on lime-depressed pyrite flotation from copper sulfide ore
7
作者 Jia-qiao YUAN Zhan DING +3 位作者 Yun-xiao BI Jie LI Shu-ming WEN Shao-jun BAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2987-3001,共15页
The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of l... The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca~(2+)and adsorption of Cu~(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S~0 hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores. 展开更多
关键词 copper sulfur ore acid mine drainage lime-depressed pyrite FLOTATION natural activator activation mechanism
下载PDF
Zonal activation of molecular carbon dioxide and hydrogen over dual sites Ni-Co-MgO catalyst for CO_(2) methanation:Synergistic catalysis of Ni and Co species
8
作者 Zonglin Li Jianjun Chen +8 位作者 Yu Xie Junjie Wen Huiling Weng Mingxue Wang Jingyi Zhang Jinyan Cao Guocai Tian Qiulin Zhang Ping Ning 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期213-225,共13页
An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant s... An in-depth mechanism in zonal activation of CO_(2)and H2molecular over dual-active sites has not been revealed yet.Here,Ni-Co-MgO was rationally constructed to elucidate the CO_(2)methanation mechanism.The abundant surface nickel and cobalt components as active sites led to strong Ni-Co interaction with charge transfer from nickel to cobalt.Notably,electron-enriched Coδ-species participated in efficient chemisorption and activation of CO_(2)to generate monodentate carbonate.Simultaneously,plentiful available Ni0sites facilitated H2dissociation,thus CO_(2)and H2were smoothly activated at zones of Coδ-species and Ni0,respectively.Detailed in situ DRIFTS,quasi situ XPS,TPSR,and DFT calculations substantiated a new formate evolution mechanism via monodentate carbonate instead of traditional bidentate carbonate based on synergistic catalysis of Coδ-species and Ni0.The zonal activation of CO_(2)and H2by tuning electron behaviors of double-center catalysts can boost heterogeneous catalytic hydrogenation performance. 展开更多
关键词 Zonal activation CO_(2) methanation Dual active sites Synergistic effect
下载PDF
Using microglia-derived extracellular vesicles to capture diversity of microglial activation phenotypes following neurological injury
9
作者 Austyn D.Roseborough Nikita Ollen-Bittle Shawn NWhitehead 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1633-1634,共2页
Microglia are one of the three glial cell populations in the central nervous system(CNS),along with astrocytes and oligodendrocytes.While microglia are unique among brain cells due to their hematologic origin and perf... Microglia are one of the three glial cell populations in the central nervous system(CNS),along with astrocytes and oligodendrocytes.While microglia are unique among brain cells due to their hematologic origin and perform immune functions similar to peripheral macrophages,they are not simply macrophages of the CNS. 展开更多
关键词 NEUROLOGICAL cytes activation
下载PDF
Strategies to achieve effective nitrogen activation
10
作者 Bin Chang Huabin Zhang +1 位作者 Shuhui Sun Gaixia Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期137-163,共27页
Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few... Ammonia serves as a crucial chemical raw material and hydrogen energy carrier.Aqueous electrocatalytic nitrogen reduction reaction(NRR),powered by renewable energy,has attracted tremendous interest during the past few years.Although some achievements have been revealed in aqueous NRR,significant challenges have also been identified.The activity and selectivity are fundamentally limited by nitrogen activation and competitive hydrogen evolution.This review focuses on the hurdles of nitrogen activation and delves into complementary strategies,including materials design and system optimization(reactor,electrolyte,and mediator).Then,it introduces advanced interdisciplinary technologies that have recently emerged for nitrogen activation using high-energy physics such as plasma and triboelectrification.With a better understanding of the corresponding reaction mechanisms in the coming years,these technologies have the potential to be extended in further applications.This review provides further insight into the reaction mechanisms of selectivity and stability of different reaction systems.We then recommend a rigorous and detailed protocol for investigating NRR performance and also highlight several potential research directions in this exciting field,coupling with advanced interdisciplinary applications,in situ/operando characterizations,and theoretical calculations. 展开更多
关键词 activation via mediators catalyst optimization electrochemical nitrogen fixation high-energy activation of nitrogen NITROGEN
下载PDF
The impact of maternal immune activation on the morphology and electrophysiological properties of postnatally-born neurons in the offspring
11
作者 Emilio J.Galván Angelica Zepeda 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期399-400,共2页
Pregnancy comes with a combination of physical changes and physiological immunosuppression that increases the susceptibility of women to pathogens and in turn,rises the prevalence of infectious diseases.
关键词 PREVALENCE activation impact
下载PDF
Experimental study on the activation of coal gasification fly ash from industrial CFB gasifiers
12
作者 Qiyao Yang Xiaobin Qi +1 位作者 Qinggang Lyu Zhiping Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期8-18,共11页
Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environmen... Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage. 展开更多
关键词 Circulating fluidized bed Coal gasification fly ash Steam activation Pore structure evolution Fluidization activation
下载PDF
Tuning beneficial calcineurin phosphatase activation to counterα-synuclein toxicity in a yeast model of Parkinson’s disease
13
作者 Srishti Chawla Mikael Molin Thomas Nystrom 《Neural Regeneration Research》 SCIE CAS 2025年第1期199-200,共2页
Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostas... Calcineurin(CN)is a calcium-and calmodulindependent serine/threonine that has been studied in many model organisms including yeast,filamentous fungi,plants,and mammals.Its biological functions range from ion homeostasis and virulence in lower eukaryotes to T-cell activation in humans by human nuclear factors of activated T-cells.CN is a heterodimeric protein consisting of a catalytic subunit,calcineurin A(Cna1p),which contains an active site with a dinuclear metal center,and a regulatory Ca^(2+) binding subunit called calcineurin B(Cnb1p)required to activate Cna1p.The calcineurin B subunit has been highly conserved through evolution:For example,the mammalian calcineurin B shows 54%identity with calcineurin B from Saccharomyces cerevisiae. 展开更多
关键词 activation DINUCLEAR CONSERVED
下载PDF
Properties of Activated Carbons from Sugarcane Leaves and Rice Straw Derived Charcoals by Activation at Low Temperature via KMnO_(4)Pre-Oxidation-Hydrolysis
14
作者 Sumrit Mopoung Narissara Namkaew and Sasiwan Srikasaem 《Journal of Renewable Materials》 EI CAS 2024年第8期1433-1454,共22页
Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous ... Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO2 accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO4 concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO4 were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO4 and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation. 展开更多
关键词 activated carbon potassium permanganate pre-oxidation-hydrolysis low carbonization temperature low activation temperature
下载PDF
Brain-wide activation involved in 15 mA transcranial alternating current stimulation in patients with first-episode major depressive disorder
15
作者 Jie Wang Wenfeng Zhao +8 位作者 Huang Wang Haixia Leng Qing Xue Mao Peng Baoquan Min Xiukun Jin Liucen Tan Keming Gao Hongxing Wang 《General Psychiatry》 CSCD 2024年第2期265-273,共9页
Background Although 15 mA transcranial alternating current stimulation(tACS)has a therapeutic effect on depression,the activations of brain structures in humans accounting for this tACS configuration remain largely un... Background Although 15 mA transcranial alternating current stimulation(tACS)has a therapeutic effect on depression,the activations of brain structures in humans accounting for this tACS configuration remain largely unknown.Aims To investigate which intracranial brain structures are engaged in the tACS at 77.5 Hz and 15 mA,delivered via the forehead and the mastoid electrodes in the human brain.Methods Actual human head models were built using the magnetic resonance imagings of eight outpatient volunteers with drug-naïve,first-episode major depressive disorder and then used to perform the electric field distributions with SimNIBS software.Results The electric field distributions of the sagittal,coronal and axial planes showed that the bilateral frontal lobes,bilateral temporal lobes,hippocampus,cingulate,hypothalamus,thalamus,amygdala,cerebellum and brainstem were visibly stimulated by the 15 mA tACS procedure.Conclusions Brain-wide activation,including the cortex,subcortical structures,cerebellum and brainstem,is involved in the 15 mA tACS intervention for first-episode major depressive disorder.Our results indicate that the simultaneous involvement of multiple brain regions is a possible mechanism for its effectiveness in reducing depressive symptoms. 展开更多
关键词 STIMULATION INVOLVEMENT activation
下载PDF
Study of the reaction mechanism for preparing powdered activated coke with SO_(2)adsorption capability via one-step rapid activation method under flue gas atmosphere
16
作者 Binxuan Zhou Jingcai Chang +5 位作者 Jun Li Jinglan Hong Tao Wang Liqiang Zhang Ping Zhou Chunyuan Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期158-168,共11页
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m... In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation. 展开更多
关键词 Reaction mechanism Powdered activated coke preparation SO_(2)adsorption One-step rapid activation Flue gas atmosphere
下载PDF
Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption
17
作者 Yifang Mi Wenqiang Wang +4 位作者 Sen Zhang Yalong Guo Yufeng Zhao Guojin Sun Zhihai Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期106-116,共11页
Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs ... Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs possessed an ultra-high specific surface(2178.90 m^(2)·g^(-1))and plenty of micro-and meso-pores,as well as a high pore volume(1.01 cm^(3)·g^(-1)).Ascribed to ultra-high surface area,π-π interaction,electrostatic interaction,as well as hydrogen-bonding interactions,the CBACs displayed huge superiority in efficient dye removal.The saturated methylene blue adsorption capacity by CBACs could be as high as 1143.4 mg·g^(-1),superior to that of other reported biomass-activated carbons.The adsorption was endothermic and modeled well by the pseudo-second-order kinetic,intra-particle diffusion,and Langmuir models.This work presented the effectiveness of Taihu cyanobacteria adsorbent ascribed to its super large specific surface area and high adsorption ability. 展开更多
关键词 activated carbon BIOMASS Dye adsorption Taihu cyanobacteria
下载PDF
Impact of Low-temperature Storage on Volatile Flavor Compounds in Prepared Pork Products
18
作者 Xiulian WANG Jiamin ZHANG +3 位作者 Ting BAI Wei WANG Kaihong YANG Lili JI 《Agricultural Biotechnology》 2024年第4期70-75,81,共7页
[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18... [Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18℃.The volatile flavor compounds of prepared pork were determined by solid-phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS)at days 0,7,14,21 and 28,and relative odor activity value(OAV),principal component analysis(PCA)and cluster analysis(CA)were combined to analyze changes in volatile flavor compounds of prepared pork during storage.[Results]The total number of volatile flavor compounds gradually decreased with the prolongation of the storage period,and OAV analysis identified 22 key flavor compounds(OAV≥1).The results of PCA and CA showed that 2-methyl-1-butanol,1-octen-3-ol,linalool,cineole,hexanal and nonanal were the main key flavor components,and the degree of flavor degradation was low under both superchilling and freezing conditions.After 28 days of storage,the alcohol content in the chilling group was significantly higher than other two groups,and the overall content of volatile flavor compounds was also significantly higher than other two groups,indicating that the-4℃chilling storage was more favorable for maintaining the overall flavor of prepared pork.[Conclusions]This study provides a theoretical basis for finding a better storage method for prepared meat products. 展开更多
关键词 low-temperature storage Prepared pork Volatile flavor component Principal component analysis Cluster analysis
下载PDF
Screening the optimal Co_(x)/CeO_(2)(110)(x=1–6)catalyst for methane activation in coalbed gas
19
作者 Li’nan Huang Danyang Li +3 位作者 Lei Jiang Zhiqiang Li Dong Tian Kongzhai Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期256-271,共16页
The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,... The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources.It is imperative to convert the abundant coalbed gas(CBG)into high value-added products,i.e.,selective and efficient conversion of methane from CBG.Methane activation,known as the“holy grail”,poses a challenge to the design and development of catalysts.The structural complexity of the active metal on the carrier is of particular concern.In this work,we have studied the nucleation growth of small Co clusters(up to Co_(6))on the surface of CeO_(2)(110)using density functional theory,from which a stable loaded Co/CeO_(2)(110)structure was selected to investigate the methane activation mechanism.Despite the relatively small size of the selected Co clusters,the obtained Co_(x)/CeO_(2)(110)exhibits interesting properties.The optimized Co_(5)/CeO_(2)(110)structure was selected as the optimal structure to study the activation mechanism of methane due to its competitive electronic structure,adsorption energy and binding energy.The energy barriers for the stepwise dissociation of methane to form CH3^(*),CH2^(*),CH^(*),and C^(*)radical fragments are 0.44,0.55,0.31,and 1.20 eV,respectively,indicating that CH^(*)dissociative dehydrogenation is the rate-determining step for the system under investigation here.This fundamental study of metal-support interactions based on Co growth on the CeO_(2)(110)surface contributes to the understanding of the essence of Co/CeO_(2) catalysts with promising catalytic behavior.It provides theoretical guidance for better designing the optimal Co/CeO_(2) catalyst for tailored catalytic reactions. 展开更多
关键词 Co cluster growth Ce-based catalysts Methane activation DFT
下载PDF
Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO_(2)
20
作者 Xu Zhao Naitao Gao +2 位作者 Shengcheng Wu Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期786-794,共9页
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d... CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs. 展开更多
关键词 polyethylene oxide-modified TiO_(2) film low-temperature process CsPbI_(2)Br-based all-inorganic perovskite solar cells photo-voltaic performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部