Phenolic compounds have very strong toxicity, so it has been paid sharply attention to find an effective way of controlling the wastewater containing phenolic compounds. The work on this subject done by domestic and o...Phenolic compounds have very strong toxicity, so it has been paid sharply attention to find an effective way of controlling the wastewater containing phenolic compounds. The work on this subject done by domestic and overseas scholars is studied in this paper, and the progress of researches on low-temperature plasma treatment is summarized through the electrical discharge types, mechanism, kinetics of phenolic compounds decomposition and combination of several methods with low-temperature plasma treatment. In addition, the crucial problem and the developing tendency on low-temperature plasma treatment for phenol-bearing wastewater are briefly discussed.展开更多
By combing the characteristics of drilling in Antarctic region, performance requirements on drilling fluid for Antarctic low temperature conditions, and research progress of low temperature drilling fluid, current pro...By combing the characteristics of drilling in Antarctic region, performance requirements on drilling fluid for Antarctic low temperature conditions, and research progress of low temperature drilling fluid, current problems of the drilling fluid have been sorted out, and the development direction of the drilling fluid has been pointed out. Drilling in the Antarctic region mainly includes drilling in snow, ice and subglacial rock formations, and drilling in Antarctic low temperature conditions will face problems in four aspects:(1) low temperature and large temperature changes in the drilling area;(2) likely well leakage and drillstring-sticking in the snow layer, creep in the ice layer, ice chip gathering jamming in the warm ice layer, well wall collapse in the subglacial rock formations;(3) lack of infrastructure and difficulty in logistical support;(4) fragile environment and low carrying capacity. After years of development, progresses have been made on low-temperature drilling fluids for the Antarctic region. Low-temperature petroleum-based drilling fluid, ethanol/ethylene glycol-based drilling fluid, ester-based drilling fluid and silicone oil-based drilling fluid have been developed. However, these drilling fluids have problems such as insufficient low-temperature tolerance, low environmental performance and weak wellbore stability, etc. In order to meet the performance requirements of drilling fluid under low-temperature conditions in Antarctic region, the working mechanisms of low-temperature drilling fluid must be examined in depth;environment-friendly low-temperature base fluid of drilling fluid and related additives must be developed to prepare environmentally friendly low temperature drilling fluid systems;multi-functional integrated adjustment method for drilling fluid must be worked out to ensure well wall stability and improve cutting-carry capacity when drilling ice formations and ice-rock interlayers;and on-site support operation codes must be established to provide technical support for Antarctic drilling.展开更多
Spinel-type manganese-cobalt oxides have been regarded as important class of electrocatalysts for oxygen reduction reaction(ORR).However,they are usually synthesized through oxidation-precipitation under aqueous ammon...Spinel-type manganese-cobalt oxides have been regarded as important class of electrocatalysts for oxygen reduction reaction(ORR).However,they are usually synthesized through oxidation-precipitation under aqueous ammonia and then crystallization at high temperature(150–180℃),which not only increases the energy consumption but also induces the growth of particles that is unfavorable for ORR.Herein,through a facile precipitation-dehydration method,ultrasmall spinel manganese-cobalt oxide nanoparticles(~5 nm)homogeneously dispersed on conductive carbon black(MnxCo3-xO4/C)were fabricated at low temperature(60℃).And the bimetallic composite oxide(Mn1.5Co1.5O4/C)with cubic spinel structure and high Mn content exhibits remarkable enhancement of ORR activity and stability compared with single metal oxide(both Mn3O4/C and Co3O4/C).The essential reason for the enhancement of activity can be attributed to the presence of the mixed Mn^3+ and Mn^4+ cations in Mn1.5Co1.5O4/C.Moreover,the ORR activity of Mn1.5Co1.5O4/C is comparable to that of commercial 20 wt% Pt/C,and the relative current density only decreases 1.4% after 12 h test,exceeding that of Pt/C and most reported manganese-cobalt oxide electrocatalysts.展开更多
To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut sh...To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut shell AC activated by nitric acid as the support and iron oxide as the active component.The crystal structure,surface morphology,pore structure,functional groups and valence states of the active components of Fe/AC catalysts were characterised by X-ray diffraction,scanning electron microscopy,nitrogen adsorption and desorption,Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy,respectively.The effect of Fe loading and calcination temperature on the low-temperature denitration of NH_(3)-SCR over Fe/AC catalysts was studied using NH_(3)as the reducing gas at low temperature(150℃).The results show that the iron oxide on the Fe/AC catalyst is spherical and uniformly dispersed on the surface of AC,thereby improving the crystallisation performance and increasing the number of active sites and specific surface area on AC in contact with the reaction gas.Hence,a rapid NH_(3)-SCR reaction was realised.When the roasting temperature remains constant,the iron oxide crystals formed by increasing the amount of loading can enter the AC pore structure and accumulate to form more micropores.When the roasting temperature is raised from 400 to 500℃,the iron oxide is mainly transformed fromα-Fe_(2)O_(3)toγ-Fe_(2)O_(3),which improves the iron oxide dispersion and increases its denitration active site,allowing gas adsorption.When the Fe loading amount is 10%,and the roasting temperature is 500℃,the NO removal rate of the Fe/AC catalyst can reach 95%.According to the study,the low-temperature NH_(3)-SCR mechanism of Fe/AC catalyst is proposed,in which the redox reaction between Fe~(2+)and Fe~(3+)will facilitate the formation of reactive oxygen vacancies,which increases the amount of oxygen adsorption on the surface,especially the increase in surface acid sites,and promotes and adsorbs more reaction gases(NH_(3),O_(2),NO).The transformation from the standard SCR reaction to the fast SCR reaction is accelerated.展开更多
Active boundary layer flow control and boundary layer manipulation in the channel flow that was based on low temperature plasma were studied by means of a lattice Boltzmann method. Two plasma actuators were placed in ...Active boundary layer flow control and boundary layer manipulation in the channel flow that was based on low temperature plasma were studied by means of a lattice Boltzmann method. Two plasma actuators were placed in a row to obtain the influence rule of their separation distance on the velocity profile at three locations and maximum velocity in the flow field. Two plasma actuators were placed symmetrically inside a channel to examine the effect of channel height and voltage on the velocity profile and flow rate. It was found that the channel height controls the distribution of flow velocity, which affected the flow rate and its direction. Increasing plasma voltage had a negative effect on the flow rate due to the generation of a larger and stronger flow vortex.展开更多
The effects of Na+ and Ca2+ in the purified water on the conductivity of zinc electrolyte and the current efficiency of zinc electrolysis were studied by the alternating current bridge method and the simulated electro...The effects of Na+ and Ca2+ in the purified water on the conductivity of zinc electrolyte and the current efficiency of zinc electrolysis were studied by the alternating current bridge method and the simulated electrolysis experiments,and the water quality index of reused water was established. The results show that the conductivity of the solution and the current efficiency decrease as these two kinds of positive ions are added in the electrolyte. The effect of Ca2+ is much more remarkable than that of Na+. ρ(Na+)≤ 8 g/L and ρ(Ca2+)≤20 mg/L are the quality indexes in the zinc electrolysis process and the concentrations of Na+ and Ca2+ in the purified water reused to the process should be less than the limited values,i.e. the water quality index of the purified water should be controlled by its reused amount.展开更多
Lithium-ion batteries(LIBs)have evolved into the mainstream power source of ene rgy sto rage equipment by reason of their advantages such as high energy density,high power,long cycle life and less pollution.With the e...Lithium-ion batteries(LIBs)have evolved into the mainstream power source of ene rgy sto rage equipment by reason of their advantages such as high energy density,high power,long cycle life and less pollution.With the expansion of their applications in deep-sea exploration,aerospace and military equipment,special working conditions have placed higher demands on the low-temperature performance of LIBs.However,at low temperatures,the severe polarization and inferior electrochemical activity of electrode materials cause the acute capacity fading upon cycling,which greatly hindered the further development of LIBs.In this review,we summarize the recent important progress of LIBs in low-temperature operations and introduce the key methods and the related action mechanisms for enhancing the capacity of the various cathode and anode materials.It aims to promote the development of high-performance electrode materials and broaden the application range of LIBs.展开更多
Using XRD,TEM and VSM methods,the phase,morphology and magnetic property of iron hydroxide oxide(FeOOH) which has been prepared by low-temperature neutralization reaction under different magnetic fields were analyzed....Using XRD,TEM and VSM methods,the phase,morphology and magnetic property of iron hydroxide oxide(FeOOH) which has been prepared by low-temperature neutralization reaction under different magnetic fields were analyzed.It can be found that the magnetic field had a great influence on the product.Acicular goethite(α-FeOOH) was synthetized without magnetic field.When the magnetic flux density was increased to 0.1T,γ-FeOOH was obtained.If the magnetic field intensity was raised to 0.5T,the product was all composed of δ-FeOOH.Moreover,the crystallization of FeOOH was greatly influenced by magnetic field as well.Thermodynamic calculation results show that the magnetic free energy of chemical reaction reached to more than hundreds KJ/mol when the magnetic field is applied.It meaned that the application of magnetic field was conducived to producing the products with higher susceptibility.Even under the low magnetic field,due to the stability of the reaction products was broken by the magnetic field,the magnetic free energy was also effective.展开更多
文摘Phenolic compounds have very strong toxicity, so it has been paid sharply attention to find an effective way of controlling the wastewater containing phenolic compounds. The work on this subject done by domestic and overseas scholars is studied in this paper, and the progress of researches on low-temperature plasma treatment is summarized through the electrical discharge types, mechanism, kinetics of phenolic compounds decomposition and combination of several methods with low-temperature plasma treatment. In addition, the crucial problem and the developing tendency on low-temperature plasma treatment for phenol-bearing wastewater are briefly discussed.
文摘By combing the characteristics of drilling in Antarctic region, performance requirements on drilling fluid for Antarctic low temperature conditions, and research progress of low temperature drilling fluid, current problems of the drilling fluid have been sorted out, and the development direction of the drilling fluid has been pointed out. Drilling in the Antarctic region mainly includes drilling in snow, ice and subglacial rock formations, and drilling in Antarctic low temperature conditions will face problems in four aspects:(1) low temperature and large temperature changes in the drilling area;(2) likely well leakage and drillstring-sticking in the snow layer, creep in the ice layer, ice chip gathering jamming in the warm ice layer, well wall collapse in the subglacial rock formations;(3) lack of infrastructure and difficulty in logistical support;(4) fragile environment and low carrying capacity. After years of development, progresses have been made on low-temperature drilling fluids for the Antarctic region. Low-temperature petroleum-based drilling fluid, ethanol/ethylene glycol-based drilling fluid, ester-based drilling fluid and silicone oil-based drilling fluid have been developed. However, these drilling fluids have problems such as insufficient low-temperature tolerance, low environmental performance and weak wellbore stability, etc. In order to meet the performance requirements of drilling fluid under low-temperature conditions in Antarctic region, the working mechanisms of low-temperature drilling fluid must be examined in depth;environment-friendly low-temperature base fluid of drilling fluid and related additives must be developed to prepare environmentally friendly low temperature drilling fluid systems;multi-functional integrated adjustment method for drilling fluid must be worked out to ensure well wall stability and improve cutting-carry capacity when drilling ice formations and ice-rock interlayers;and on-site support operation codes must be established to provide technical support for Antarctic drilling.
文摘Spinel-type manganese-cobalt oxides have been regarded as important class of electrocatalysts for oxygen reduction reaction(ORR).However,they are usually synthesized through oxidation-precipitation under aqueous ammonia and then crystallization at high temperature(150–180℃),which not only increases the energy consumption but also induces the growth of particles that is unfavorable for ORR.Herein,through a facile precipitation-dehydration method,ultrasmall spinel manganese-cobalt oxide nanoparticles(~5 nm)homogeneously dispersed on conductive carbon black(MnxCo3-xO4/C)were fabricated at low temperature(60℃).And the bimetallic composite oxide(Mn1.5Co1.5O4/C)with cubic spinel structure and high Mn content exhibits remarkable enhancement of ORR activity and stability compared with single metal oxide(both Mn3O4/C and Co3O4/C).The essential reason for the enhancement of activity can be attributed to the presence of the mixed Mn^3+ and Mn^4+ cations in Mn1.5Co1.5O4/C.Moreover,the ORR activity of Mn1.5Co1.5O4/C is comparable to that of commercial 20 wt% Pt/C,and the relative current density only decreases 1.4% after 12 h test,exceeding that of Pt/C and most reported manganese-cobalt oxide electrocatalysts.
基金Funded by the General Project of Science and Technology Plan of Yunnan Science and Technology Department(Nos.202001AT070029,2019FB077)Open Fund of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab-20-4)。
文摘To study the modification mechanism of activated carbon(AC)by Fe and the low-temperature NH_(3)-selective catalytic reduction(SCR)denitration mechanism of Fe/AC catalysts,Fe/AC catalysts were prepared using coconut shell AC activated by nitric acid as the support and iron oxide as the active component.The crystal structure,surface morphology,pore structure,functional groups and valence states of the active components of Fe/AC catalysts were characterised by X-ray diffraction,scanning electron microscopy,nitrogen adsorption and desorption,Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy,respectively.The effect of Fe loading and calcination temperature on the low-temperature denitration of NH_(3)-SCR over Fe/AC catalysts was studied using NH_(3)as the reducing gas at low temperature(150℃).The results show that the iron oxide on the Fe/AC catalyst is spherical and uniformly dispersed on the surface of AC,thereby improving the crystallisation performance and increasing the number of active sites and specific surface area on AC in contact with the reaction gas.Hence,a rapid NH_(3)-SCR reaction was realised.When the roasting temperature remains constant,the iron oxide crystals formed by increasing the amount of loading can enter the AC pore structure and accumulate to form more micropores.When the roasting temperature is raised from 400 to 500℃,the iron oxide is mainly transformed fromα-Fe_(2)O_(3)toγ-Fe_(2)O_(3),which improves the iron oxide dispersion and increases its denitration active site,allowing gas adsorption.When the Fe loading amount is 10%,and the roasting temperature is 500℃,the NO removal rate of the Fe/AC catalyst can reach 95%.According to the study,the low-temperature NH_(3)-SCR mechanism of Fe/AC catalyst is proposed,in which the redox reaction between Fe~(2+)and Fe~(3+)will facilitate the formation of reactive oxygen vacancies,which increases the amount of oxygen adsorption on the surface,especially the increase in surface acid sites,and promotes and adsorbs more reaction gases(NH_(3),O_(2),NO).The transformation from the standard SCR reaction to the fast SCR reaction is accelerated.
文摘Active boundary layer flow control and boundary layer manipulation in the channel flow that was based on low temperature plasma were studied by means of a lattice Boltzmann method. Two plasma actuators were placed in a row to obtain the influence rule of their separation distance on the velocity profile at three locations and maximum velocity in the flow field. Two plasma actuators were placed symmetrically inside a channel to examine the effect of channel height and voltage on the velocity profile and flow rate. It was found that the channel height controls the distribution of flow velocity, which affected the flow rate and its direction. Increasing plasma voltage had a negative effect on the flow rate due to the generation of a larger and stronger flow vortex.
基金Project(2007BAC25B01) supported by the National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science and Technology of China during the 11th Five-Year PlanProject(308019) supported by the Key Scientific and Technical Project, Ministry of Education of China+1 种基金Project(08JJ3020) supported by Hunan Provincial Natural Science Foundation of ChinaProject (50830301) supported by the Key Project of the National Natural Science Foundation of China
文摘The effects of Na+ and Ca2+ in the purified water on the conductivity of zinc electrolyte and the current efficiency of zinc electrolysis were studied by the alternating current bridge method and the simulated electrolysis experiments,and the water quality index of reused water was established. The results show that the conductivity of the solution and the current efficiency decrease as these two kinds of positive ions are added in the electrolyte. The effect of Ca2+ is much more remarkable than that of Na+. ρ(Na+)≤ 8 g/L and ρ(Ca2+)≤20 mg/L are the quality indexes in the zinc electrolysis process and the concentrations of Na+ and Ca2+ in the purified water reused to the process should be less than the limited values,i.e. the water quality index of the purified water should be controlled by its reused amount.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.51772205,51572192,51772208,51472179)the General Program of Municipal Natural Science Foundation of Tianjin(Nos.17JCYBJC17000,17JCYBJC22700)。
文摘Lithium-ion batteries(LIBs)have evolved into the mainstream power source of ene rgy sto rage equipment by reason of their advantages such as high energy density,high power,long cycle life and less pollution.With the expansion of their applications in deep-sea exploration,aerospace and military equipment,special working conditions have placed higher demands on the low-temperature performance of LIBs.However,at low temperatures,the severe polarization and inferior electrochemical activity of electrode materials cause the acute capacity fading upon cycling,which greatly hindered the further development of LIBs.In this review,we summarize the recent important progress of LIBs in low-temperature operations and introduce the key methods and the related action mechanisms for enhancing the capacity of the various cathode and anode materials.It aims to promote the development of high-performance electrode materials and broaden the application range of LIBs.
基金Item Sponsored by the National Natural Science Foundation of China(Key Basic Project,No.51034010)International cooperation project from Shanghai Science and Technology Commission(No.075207015)Key Basic Project from Science and Technology Commission of Shanghai Municipality(No.08JC1410000)
文摘Using XRD,TEM and VSM methods,the phase,morphology and magnetic property of iron hydroxide oxide(FeOOH) which has been prepared by low-temperature neutralization reaction under different magnetic fields were analyzed.It can be found that the magnetic field had a great influence on the product.Acicular goethite(α-FeOOH) was synthetized without magnetic field.When the magnetic flux density was increased to 0.1T,γ-FeOOH was obtained.If the magnetic field intensity was raised to 0.5T,the product was all composed of δ-FeOOH.Moreover,the crystallization of FeOOH was greatly influenced by magnetic field as well.Thermodynamic calculation results show that the magnetic free energy of chemical reaction reached to more than hundreds KJ/mol when the magnetic field is applied.It meaned that the application of magnetic field was conducived to producing the products with higher susceptibility.Even under the low magnetic field,due to the stability of the reaction products was broken by the magnetic field,the magnetic free energy was also effective.