Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition...Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA.展开更多
The yield of tar and syngas has been investigated by catalytic pyrolysis of Pingzhuang lignite(PZL)over Ca(OH)2 catalyst in temperature range of 600℃-1000℃in a tube furnace.The results show that the yield of volatil...The yield of tar and syngas has been investigated by catalytic pyrolysis of Pingzhuang lignite(PZL)over Ca(OH)2 catalyst in temperature range of 600℃-1000℃in a tube furnace.The results show that the yield of volatile pyrolysis increases and char decreases with rising temperature for both raw and catalyzed Pingzhuang lignite.The hydrogen fraction(H2)increased from 20%to 40%for the PZL sample;but,for the PZL-Ca(OH)2 sample,H2 fraction fluctuated randomly between 35%to 42%,with the maximum H2 fraction found at 1000℃.The Gaschromatography mass-spectroscopic(GC-MS)analysis revealed that the maximum tar yield at 800℃and 700℃was obtained for PZL and PZL-Ca(OH)2,respectively.The surface morphology of PZL and PZL-Ca(OH)2 chars underwent different transformation in the presence of catalyst as illustrated by SEM/EDX,FTIR,and BET analysis.Furthermore,char sample was investigated for the carbon conversion and reactivity index using TGA analysis under N2 and CO atmosphere.展开更多
A series of CoMo/ZrO2-Al2O3 catalysts with different contents of ZrO2 were prepared and characterized through XRD,XPS,NH3-TPD,H2-TPR,HR-TEM,and N2 adsorption-desorption technologies.The performance of the catalysts fo...A series of CoMo/ZrO2-Al2O3 catalysts with different contents of ZrO2 were prepared and characterized through XRD,XPS,NH3-TPD,H2-TPR,HR-TEM,and N2 adsorption-desorption technologies.The performance of the catalysts for low-temperature coal tar(LTCT)hydrocracking reaction was investigated.The interaction between active metals and Al2O3 was weakened with the introduction of ZrO2,which increased the MoS2 content and the stack layer number of MoS2 slabs to further promote the catalytic performance.At the same time,the amount of acid sites increased with an increasing ZrO2 content.When the ZrO2 content reached 32%,the pore volume of the catalyst decreased significantly.This phenomenon reduced the content of MoS2 and the stack layer number of MoS2 slabs,which were not conducive to improving the catalytic performance.The catalyst containing 24%of ZrO2 exhibited the best catalytic performance for hydrocracking reaction,with the residue conversion and the total yield of gasoline and diesel fractions reaching 60.64%and 66.54%,respectively,which could fulfill the requirements for hydrocracking LTCT.展开更多
Bamboo was a popular material substituting for wood, especially for one-off commodity in China. In order to recover energy and materials from waste bamboo, the basic characteristics of bamboo pyrolysis were studied by...Bamboo was a popular material substituting for wood, especially for one-off commodity in China. In order to recover energy and materials from waste bamboo, the basic characteristics of bamboo pyrolysis were studied by a thermogravimetric analyzer. It implied that the reaction began at 190-210℃, and the percentage of solid product deceased from about 25% to 17% when temperature ranged from 400℃ to 700℃. A lab-scale fluidized-bed furnace was setup to research the detailed properties of gaseous, liquid and solid products respectively. When temperature increased from 400℃ to 700℃, the mass percent of solid product decreased from 27% to 17% approximately, while that of syngas rose up from 19% to 35%. When temperature was about 500℃, the percentage of tar reached the top, about 31%. The mass balance of these experiments was about 93%-95%. It indicated that three reactions involved in the process: pyrolysis of exterior bamboo, pyrolysis of interior bamboo and secondary pyrolysis of heavy tar.展开更多
The conversion of waste tire pyrolysis oil(WTPO)into S-doped porous carbon nanorods(labeled as WPCNs)with hierarchical pore structure is realized by a simple template-directed approach.The specific surface area of as-...The conversion of waste tire pyrolysis oil(WTPO)into S-doped porous carbon nanorods(labeled as WPCNs)with hierarchical pore structure is realized by a simple template-directed approach.The specific surface area of as-obtained porous carbon nanorods can reach up to 1448 m^(2) g^(−1) without the addition of any activating agent.As the capacitive electrode,WPCNs possess the extraordinary compatibility to capacitance,different electrolyte systems as well as long-term cycle life even at a commercial-level areal mass loading(10 mg cm^(−2)).Besides,only an extremely small capacitance fluctuation is observed under the extreme circumstance(−40 to 80℃),reflecting the excellent high-and low-temperature performance.The relationship between the pore structure and capacitive behavior is analyzed by comparing WPCNs with mesopores-dominated asphalt-derived porous carbon nanorods(APCNs)and micropores-dominated activated carbon.The molecular dynamics simulation further reveals the ion diffusion and transfer ability of the as-prepared carbon materials under different pore size distribution.The total ion flow(NT)of WPCNs calculated by the simulation is obviously larger than APCNs and the N_(T) ratio between them is similar with the experimental average capacitance ratio.Furthermore,this work also provides a valuable strategy to prepare the electrode material with high capacitive energy storage ability through the high value-added utilization of WTPO.展开更多
In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the fi...In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the first reactor is for syngas production and the second is for coal pyrolysis)and double layers pattern(catalyst was at upper layer and coal was at lower layer).Besides,pure gases atmosphere including N2,H2,CO,H2-CO were also tested to investigate the mechanism of the coal pyrolysis under different atmospheres.The pyrolysis products including gas,liquid and char were characterized,the result showed that,compared with the inert atmosphere,the tar yield is improved with the reducing atmospheres,as well as the tar quality.The hydrogen partial pressure is the key point for that improvement.In the atmosphere of H2,the tar yield was increased by 31.3%and the contained BTX(benzene,toluene and xylene)and naphthalene were increased by 27.1%and 133.4%.The double reactors pattern also performed outstandingly,with 25.4%increment of tar yield and 25.0%and 79.4%for the BTX and naphthalene.The double layers pattern is not effective enough due to the low temperature(700°C)in which the Ni-based catalyst was not fully activated.展开更多
Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produ...Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produce novel graphite with low energy consumption and high performance is economically important.Herein,a nanostructured graphite composed of multi-walled carbon nanotubes(MWCNTs)and graphite shells was prepared by one-pot method through low-temperature pyrolysis of iron-based metal-organic framework(MOF)and carbon source.The high graphitization degree of nanostructured graphite makes the initial Coulombic efficiency(ICE)exceed 80%,and the three-dimensional(3D)conductive network ensures a specific capacity of 234 mAh·g^(−1)after 1000 cycles at a high current density of 500 mA·g^(−1).In addition,the typical graphite potassium storage mechanism is also demonstrated by in situ X-ray diffraction(XRD)and in situ Raman spectroscopy,and its practicality is also proved by the voltage of the full cells.This work provides a feasible way to optimize the practical production process of AG and expand its application in energy storage.展开更多
Low-rank coal(LRC)can be converted to high value-added naphthalene and its alkylated derivatives through low-temperature catalytic pyrolysis.In this paper,the catalytic pyrolysis of Beisu LRC in a fixed-bed at low tem...Low-rank coal(LRC)can be converted to high value-added naphthalene and its alkylated derivatives through low-temperature catalytic pyrolysis.In this paper,the catalytic pyrolysis of Beisu LRC in a fixed-bed at low temperature was investigated.And the catalytic effects of HZSM-5,low-temperature carbocoal(LtC),and LtC-HZSM-5 on the content and yield of naphthalene oil were examined.The results showed that the generation of naphthalene oil in low-temperature LRC pyrolysis(LT-LP)process could be improved when LtC(prepared at 550℃)or HZSM-5 was individually used as a catalyst.Compared with sole pyrolysis of raw LRC,the addition of the LtC-HZSM-5 catalyst increased the content of naphthalene oil from 11.19 wt.%to 31.49 wt%.And the yield of naphthalene oil was increased from 1.07 wt%to 5.31 wt%.The reactions of micromolecular hydrogen-containing radicals(⋅MHCR)were optimized by LtC.⋅MHCR could be captured in relatively low-temperature region(200-400℃)and released at high temperature by LtC.The generation of phenolics was inhibited by HZSM-5.As a result,the naphthalene oil-rich tar was obtained through low-temperature LtC-HZSM-5 catalytic pyrolysis of Beisu LRC.展开更多
Shenmu(SM)subbituminous coal without caking property was treated by low-temperature rapid pyrolysis(LTRP)to modify its caking and coking properties.The treated samples were characterized by Fourier transform infrared ...Shenmu(SM)subbituminous coal without caking property was treated by low-temperature rapid pyrolysis(LTRP)to modify its caking and coking properties.The treated samples were characterized by Fourier transform infrared spectrometry,vitrinite reflectance,and X-ray diffraction to determine the modification mechanism.Moreover,caking index(G)and coking indices(mechanical strength,coke reactivity,and coke strength after reaction)were employed to evaluate caking and coking properties,respectively.The results showed that SM coal was gradually upgraded with increasing processing temperature.Furthermore,the G values for the treated samples were significantly higher than that for SM coal,and G reached the maximum value at 450℃,implying the modification of caking property and the existence of an optimum temperature(450℃).Additionally,laboratory coking determinations showed that LTRP increased the mechanical strength of coke and coke strength after reaction and decreased coke reactivity when the treated coals were used in the coal blends instead of raw SM coal.Overall,LTRP treatment is effective to improve the caking and coking properties of SM coal.A mechanism was proposed for the modification.Suitable upgrading degree with suitable molecular masses and some releasable hydrogen-rich donor species present within the coal,which dominate the development of caking property,is important.展开更多
The composition of low temperature pyrolysis coal tar has an effect on its further processing and reasomble utlization In this paper, the compeition or coal tars produced from both low temperature pyroysis in a fluidi...The composition of low temperature pyrolysis coal tar has an effect on its further processing and reasomble utlization In this paper, the compeition or coal tars produced from both low temperature pyroysis in a fluidized bed aud flash pyrolysis with solid heat carrier have been investigated by the methch of fractional seperation and Gas Chromatography-Mass Spectrometry (GC-MS)- It is observed that the degree of coalification maceral and secondary reaction temperature (freeboard temperature in a fluidized bed) have some iufluence on the composition of coal tars- The main compoundes are phenol cresols,xylenols, naphthalene, alkylnaphthalenes, antbraceue, phenanthrene,acenaphthylene, fluoren, indene and so展开更多
富油煤是集煤、油、气属性于一身的煤基油气资源,针对国内“相对富煤、缺油、少气”的能源禀赋,开发富油煤对缓解我国紧张的油气资源供应局势、实现煤炭的绿色开发和低碳利用具有重要的意义。以富油煤为主要关键词,通过CNKI和Web of Sci...富油煤是集煤、油、气属性于一身的煤基油气资源,针对国内“相对富煤、缺油、少气”的能源禀赋,开发富油煤对缓解我国紧张的油气资源供应局势、实现煤炭的绿色开发和低碳利用具有重要的意义。以富油煤为主要关键词,通过CNKI和Web of Science数据库检索自1985-2023年底已公开发表的学术论文和专利,统计分析富油煤的发展历程和主要研究内容,梳理了富油煤研究的热点方向与前沿领域,展望了未来发展趋势。研究发现:富油煤热解、赋存特征及沉积环境、孔隙和分子结构、焦油产率预测、微生物降解、资源潜力及开发利用是当前富油煤研究热点内容。富油煤含有热解可生成油气的富氢结构,如脂肪结构的侧链与桥键及缩合芳香核周缘的弱键结构;富油煤多形成于陆相沉积物供应稳定、气候温暖湿润、强还原条件下的沉积环境;孔隙结构影响富油煤的热解反应效率、焦油析出和油气运移,而分子结构(主要为脂肪族氢含量和富氢弱键)决定了富油煤的生油潜力;富油煤通过微生物的水解、发酵、产氢产乙酸和产甲烷4个阶段向油气转化。随着地质选区技术瓶颈突破及多学科交叉与融合,富油煤富油性评价指标与预测方法、富氢组分的来源与定量判识、原位开发围岩封闭性及其评价方法、微生物降解与热解联作技术将成为今后研究的热点方向。研究成果为厘清当前富油煤的研究方向和未来走势奠定了基础。展开更多
基金supported by the National Natural Science Foundation of China(21576046)the Innovation Team Support Program in Key Areas of the Dalian Science and Technology Bureau(2019RT10).
文摘Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA.
基金Supported by the Innovation Reasearch Groups of the National Natural Science Foundation of China(51621005)EPSRC from the UK.
文摘The yield of tar and syngas has been investigated by catalytic pyrolysis of Pingzhuang lignite(PZL)over Ca(OH)2 catalyst in temperature range of 600℃-1000℃in a tube furnace.The results show that the yield of volatile pyrolysis increases and char decreases with rising temperature for both raw and catalyzed Pingzhuang lignite.The hydrogen fraction(H2)increased from 20%to 40%for the PZL sample;but,for the PZL-Ca(OH)2 sample,H2 fraction fluctuated randomly between 35%to 42%,with the maximum H2 fraction found at 1000℃.The Gaschromatography mass-spectroscopic(GC-MS)analysis revealed that the maximum tar yield at 800℃and 700℃was obtained for PZL and PZL-Ca(OH)2,respectively.The surface morphology of PZL and PZL-Ca(OH)2 chars underwent different transformation in the presence of catalyst as illustrated by SEM/EDX,FTIR,and BET analysis.Furthermore,char sample was investigated for the carbon conversion and reactivity index using TGA analysis under N2 and CO atmosphere.
基金Financial support from the National Nature Science Foundation of China(21968034)is gratefully acknowledged.
文摘A series of CoMo/ZrO2-Al2O3 catalysts with different contents of ZrO2 were prepared and characterized through XRD,XPS,NH3-TPD,H2-TPR,HR-TEM,and N2 adsorption-desorption technologies.The performance of the catalysts for low-temperature coal tar(LTCT)hydrocracking reaction was investigated.The interaction between active metals and Al2O3 was weakened with the introduction of ZrO2,which increased the MoS2 content and the stack layer number of MoS2 slabs to further promote the catalytic performance.At the same time,the amount of acid sites increased with an increasing ZrO2 content.When the ZrO2 content reached 32%,the pore volume of the catalyst decreased significantly.This phenomenon reduced the content of MoS2 and the stack layer number of MoS2 slabs,which were not conducive to improving the catalytic performance.The catalyst containing 24%of ZrO2 exhibited the best catalytic performance for hydrocracking reaction,with the residue conversion and the total yield of gasoline and diesel fractions reaching 60.64%and 66.54%,respectively,which could fulfill the requirements for hydrocracking LTCT.
基金Project supported by the National Basic Research Program (973) of China (Nos. G199902210534, 2005CB221202 and 2007CB210208)the Hi-Tech Research and Development Program (863) of China (No. 2006AA020101)the Open Foundation of State Key Laboratory of Clean Energy Utilization of China (No. ZJUCEU2006004)
文摘Bamboo was a popular material substituting for wood, especially for one-off commodity in China. In order to recover energy and materials from waste bamboo, the basic characteristics of bamboo pyrolysis were studied by a thermogravimetric analyzer. It implied that the reaction began at 190-210℃, and the percentage of solid product deceased from about 25% to 17% when temperature ranged from 400℃ to 700℃. A lab-scale fluidized-bed furnace was setup to research the detailed properties of gaseous, liquid and solid products respectively. When temperature increased from 400℃ to 700℃, the mass percent of solid product decreased from 27% to 17% approximately, while that of syngas rose up from 19% to 35%. When temperature was about 500℃, the percentage of tar reached the top, about 31%. The mass balance of these experiments was about 93%-95%. It indicated that three reactions involved in the process: pyrolysis of exterior bamboo, pyrolysis of interior bamboo and secondary pyrolysis of heavy tar.
基金supported by the National Key Research and Development Program of China(No.2018YFC1902603).
文摘The conversion of waste tire pyrolysis oil(WTPO)into S-doped porous carbon nanorods(labeled as WPCNs)with hierarchical pore structure is realized by a simple template-directed approach.The specific surface area of as-obtained porous carbon nanorods can reach up to 1448 m^(2) g^(−1) without the addition of any activating agent.As the capacitive electrode,WPCNs possess the extraordinary compatibility to capacitance,different electrolyte systems as well as long-term cycle life even at a commercial-level areal mass loading(10 mg cm^(−2)).Besides,only an extremely small capacitance fluctuation is observed under the extreme circumstance(−40 to 80℃),reflecting the excellent high-and low-temperature performance.The relationship between the pore structure and capacitive behavior is analyzed by comparing WPCNs with mesopores-dominated asphalt-derived porous carbon nanorods(APCNs)and micropores-dominated activated carbon.The molecular dynamics simulation further reveals the ion diffusion and transfer ability of the as-prepared carbon materials under different pore size distribution.The total ion flow(NT)of WPCNs calculated by the simulation is obviously larger than APCNs and the N_(T) ratio between them is similar with the experimental average capacitance ratio.Furthermore,this work also provides a valuable strategy to prepare the electrode material with high capacitive energy storage ability through the high value-added utilization of WTPO.
基金The author would like to appreciate the funding supports of the State of Wyoming and China Scholarship Council.Without their supports,the international collaboration on clean energy technology development would have been impossible.
文摘In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the first reactor is for syngas production and the second is for coal pyrolysis)and double layers pattern(catalyst was at upper layer and coal was at lower layer).Besides,pure gases atmosphere including N2,H2,CO,H2-CO were also tested to investigate the mechanism of the coal pyrolysis under different atmospheres.The pyrolysis products including gas,liquid and char were characterized,the result showed that,compared with the inert atmosphere,the tar yield is improved with the reducing atmospheres,as well as the tar quality.The hydrogen partial pressure is the key point for that improvement.In the atmosphere of H2,the tar yield was increased by 31.3%and the contained BTX(benzene,toluene and xylene)and naphthalene were increased by 27.1%and 133.4%.The double reactors pattern also performed outstandingly,with 25.4%increment of tar yield and 25.0%and 79.4%for the BTX and naphthalene.The double layers pattern is not effective enough due to the low temperature(700°C)in which the Ni-based catalyst was not fully activated.
基金the financial support from the National Key Research and Development Program of China(Nos.2022YFB2404300 and 2023YFB3809303)the National Natural Science Foundation of China(Nos.51832004 and 52127816)State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(No.WUT:2022-KF-4).
文摘Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produce novel graphite with low energy consumption and high performance is economically important.Herein,a nanostructured graphite composed of multi-walled carbon nanotubes(MWCNTs)and graphite shells was prepared by one-pot method through low-temperature pyrolysis of iron-based metal-organic framework(MOF)and carbon source.The high graphitization degree of nanostructured graphite makes the initial Coulombic efficiency(ICE)exceed 80%,and the three-dimensional(3D)conductive network ensures a specific capacity of 234 mAh·g^(−1)after 1000 cycles at a high current density of 500 mA·g^(−1).In addition,the typical graphite potassium storage mechanism is also demonstrated by in situ X-ray diffraction(XRD)and in situ Raman spectroscopy,and its practicality is also proved by the voltage of the full cells.This work provides a feasible way to optimize the practical production process of AG and expand its application in energy storage.
基金the introduction of scientific and technological innovation team of Ningxia Hui Autonomous Region(2016)the Key Research&Development Program of Shandong Province(2018GGX104013)。
文摘Low-rank coal(LRC)can be converted to high value-added naphthalene and its alkylated derivatives through low-temperature catalytic pyrolysis.In this paper,the catalytic pyrolysis of Beisu LRC in a fixed-bed at low temperature was investigated.And the catalytic effects of HZSM-5,low-temperature carbocoal(LtC),and LtC-HZSM-5 on the content and yield of naphthalene oil were examined.The results showed that the generation of naphthalene oil in low-temperature LRC pyrolysis(LT-LP)process could be improved when LtC(prepared at 550℃)or HZSM-5 was individually used as a catalyst.Compared with sole pyrolysis of raw LRC,the addition of the LtC-HZSM-5 catalyst increased the content of naphthalene oil from 11.19 wt.%to 31.49 wt%.And the yield of naphthalene oil was increased from 1.07 wt%to 5.31 wt%.The reactions of micromolecular hydrogen-containing radicals(⋅MHCR)were optimized by LtC.⋅MHCR could be captured in relatively low-temperature region(200-400℃)and released at high temperature by LtC.The generation of phenolics was inhibited by HZSM-5.As a result,the naphthalene oil-rich tar was obtained through low-temperature LtC-HZSM-5 catalytic pyrolysis of Beisu LRC.
基金The authors are grateful to the National Natural Science Foundation of China(No.21776002)Natural Science Foundation of Anhui Provincial Education Department(Nos.KJ2016A097 and KJ2017A056)+1 种基金Innovation Project of Overseas People of Anhui Province,Student Research Training Program of Anhui Province(201810360190)Youth Natural Science Foundation of Anhui University of Technology(No.QZ201806)for financial support.
文摘Shenmu(SM)subbituminous coal without caking property was treated by low-temperature rapid pyrolysis(LTRP)to modify its caking and coking properties.The treated samples were characterized by Fourier transform infrared spectrometry,vitrinite reflectance,and X-ray diffraction to determine the modification mechanism.Moreover,caking index(G)and coking indices(mechanical strength,coke reactivity,and coke strength after reaction)were employed to evaluate caking and coking properties,respectively.The results showed that SM coal was gradually upgraded with increasing processing temperature.Furthermore,the G values for the treated samples were significantly higher than that for SM coal,and G reached the maximum value at 450℃,implying the modification of caking property and the existence of an optimum temperature(450℃).Additionally,laboratory coking determinations showed that LTRP increased the mechanical strength of coke and coke strength after reaction and decreased coke reactivity when the treated coals were used in the coal blends instead of raw SM coal.Overall,LTRP treatment is effective to improve the caking and coking properties of SM coal.A mechanism was proposed for the modification.Suitable upgrading degree with suitable molecular masses and some releasable hydrogen-rich donor species present within the coal,which dominate the development of caking property,is important.
文摘The composition of low temperature pyrolysis coal tar has an effect on its further processing and reasomble utlization In this paper, the compeition or coal tars produced from both low temperature pyroysis in a fluidized bed aud flash pyrolysis with solid heat carrier have been investigated by the methch of fractional seperation and Gas Chromatography-Mass Spectrometry (GC-MS)- It is observed that the degree of coalification maceral and secondary reaction temperature (freeboard temperature in a fluidized bed) have some iufluence on the composition of coal tars- The main compoundes are phenol cresols,xylenols, naphthalene, alkylnaphthalenes, antbraceue, phenanthrene,acenaphthylene, fluoren, indene and so
文摘富油煤是集煤、油、气属性于一身的煤基油气资源,针对国内“相对富煤、缺油、少气”的能源禀赋,开发富油煤对缓解我国紧张的油气资源供应局势、实现煤炭的绿色开发和低碳利用具有重要的意义。以富油煤为主要关键词,通过CNKI和Web of Science数据库检索自1985-2023年底已公开发表的学术论文和专利,统计分析富油煤的发展历程和主要研究内容,梳理了富油煤研究的热点方向与前沿领域,展望了未来发展趋势。研究发现:富油煤热解、赋存特征及沉积环境、孔隙和分子结构、焦油产率预测、微生物降解、资源潜力及开发利用是当前富油煤研究热点内容。富油煤含有热解可生成油气的富氢结构,如脂肪结构的侧链与桥键及缩合芳香核周缘的弱键结构;富油煤多形成于陆相沉积物供应稳定、气候温暖湿润、强还原条件下的沉积环境;孔隙结构影响富油煤的热解反应效率、焦油析出和油气运移,而分子结构(主要为脂肪族氢含量和富氢弱键)决定了富油煤的生油潜力;富油煤通过微生物的水解、发酵、产氢产乙酸和产甲烷4个阶段向油气转化。随着地质选区技术瓶颈突破及多学科交叉与融合,富油煤富油性评价指标与预测方法、富氢组分的来源与定量判识、原位开发围岩封闭性及其评价方法、微生物降解与热解联作技术将成为今后研究的热点方向。研究成果为厘清当前富油煤的研究方向和未来走势奠定了基础。