Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, su...Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, such as N2 physisorption, X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), in situ Fourier transform infrared spectroscopy (in situ FT-IR) and temperature-programmed reduction (TPR) and their catalytic activities were evaluated with the selective catalytic reduction (SCR) of NOx by NH3. It was found that with the addition of Cr, more NO could be removed in the low-temperature window (below 120 ℃). Among the tested catalysts, Mn-Fe- Cr (2 : 2 : 1) catalyst exhibited the best catalytic performance at 80 ℃ with the NO conversion higher than 90%. The combination of the reaction and characterization results indicated that (1) the strong interaction among tertiary metal oxides existed in the catalysts when Cr was appropriately added, which made the active components better dispersed with less agglomeration and sintering and the largest BET specific surface area could be obtained; (2) Cr improved the low-temperature reducibility of the catalyst and promoted the formation of the active intermediate (-NH3+), which favored the low-temperature SCR reaction.展开更多
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele...Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.展开更多
In this study,a MnOx@TiO2 core‐shell catalyst prepared by a two‐step method was used for the low‐temperature selective catalytic reduction of NOx with NH3.The catalyst exhibits high activity,high stability,and exce...In this study,a MnOx@TiO2 core‐shell catalyst prepared by a two‐step method was used for the low‐temperature selective catalytic reduction of NOx with NH3.The catalyst exhibits high activity,high stability,and excellent N2 selectivity.Furthermore,it displays better SO2 and H2O tolerance than its MnOx,TiO2,and MnOx/TiO2 counterparts.The prepared catalyst was characterized systematically by transmission electron microscopy,high‐resolution transmission electron microscopy,X‐ray diffraction,Raman,BET,X‐ray photoelectron spectroscopy,NH3 temperature‐programmed desorption and H2 temperature‐programmed reduction analyses.The optimized MnOx@TiO2 catalyst exhibits an obvious core‐shell structure,where the TiO2 shell is evenly distributed over the MnOx nanorod core.The catalyst also presents abundant mesopores,Lewis‐acid sites,and high redox capability,all of which enhance its catalytic performance.According to the XPS results,the decrease in the number of Mn4+active centers after SO2 poisoning is significantly lower in MnOx@TiO2 than in MnOx/TiO2.The core‐shell structure is hence able to protect the catalytic active sites from H2O and SO2 poisoning.展开更多
In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of ...In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of NO using NH<sub>3</sub>. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO<sub>2</sub>/H<sub>2</sub>O resistance of the catalysts. The results showed that the FeCe(1:6)O<sub> x </sub> (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O<sub> x </sub> catalyst had the highest NO conversion with an activity of 94-99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h<sup>−1</sup>. The NO conversion for the FeCe(1:6)O<sub> x </sub> catalyst also reached 80-98% between 200 and 300 °C at a space velocity of 204,000 h<sup>−1</sup>. In addition, the FeCe(1:6)O<sub> x </sub> catalyst demonstrated good stability in a 10-h SCR reaction at 200-300 °C. Even in the presence of SO<sub>2</sub> and H<sub>2</sub>O, the FeCe(1:6)O<sub> x </sub> catalyst exhibited good SCR performance.展开更多
The metal oxide catalyst was prepared by loading MnOx and FeOx on carbon nano-tubes (CNTs) with impregnation method. Then the catalyst was characterized by BET and XPS, and the effect of adding FeOx on MnOx/CNTs catal...The metal oxide catalyst was prepared by loading MnOx and FeOx on carbon nano-tubes (CNTs) with impregnation method. Then the catalyst was characterized by BET and XPS, and the effect of adding FeOx on MnOx/CNTs catalyst at the low-temperature selective catalytic reduction of NO with NH3 was investigated. The results showed that the active components were loaded suc-cessfully and easily on the carriers by impregnation. The Mn-Fe/CNTs catalyst was chose 10% Fe(NO3)3 solution to impregnate Mn-Fe/CNTs. The species of active components loaded on the catalyst were Fe2O3. The different concentration of impregnant solution played an important role for NO conversion in SCR with NH3. With the increase of the concentration of impregnant solution, the NO conversion of catalysts was increasing initially then decreasing.展开更多
To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstru...To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstructure,the specific surface area,the pore volume,the crystal structure,and functional groups presented in the prepared Cu2O/AC catalysts were thoroughly characterized.By using scanning electron microscopy(SEM),nitrogen adsorption/desorption isotherms,Fourier-transform infrared(FTIR)spectroscopy and X-ray diffractometry(XRD),the effects of Cu2O loading and calcination temperature on Cu2O/AC catalysts were investigated at low temperature(150℃).The research shows that Cu on the Cu2O/AC catalyst is in the form of Cu2O with good crystalline performance and is spherical and uniformly dispersed on the AC surface.The loading of Cu2O increases the active sites and the specific surface area of the reaction gas contact,which is conducive to the rapid progress of the carbon monoxide selective catalytic reduction(CO-SCR)reaction.When the loading of Cu2O was 8%and the calcination temperature was 500℃,the removal rate of NOx facilitated by the Cu2O/AC catalyst reached 97.9%.These findings provide a theoretical basis for understanding the denitrification of sintering flue gas.展开更多
Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding th...Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding the copper metal centres.This investigation,employing density functional theory calculations,focuses on a novel family of binuclear Cu molecular catalysts.The modulation of their coordination configuration through the introduction of organic groups aims to assess their efficacy in converting CO_(2) to C_(2)products.Our findings highlight the crucial role of chemical valence state in shaping the characteristics of binuclear Cu catalysts,consequently influencing the eCO_(2)R behaviour,Notably,the Cu(Ⅱ)Cu(Ⅱ)macrocycle catalyst exhibits enhanced suppression of the hydrogen evolution reaction(HER),facilitating proton trans fer and the eCO_(2)R process.Fu rthermore,we explo re the impact of diverse electro n-withdrawing and electron-donating groups coordinated to the macrocycle(R=-F,-H,and-OCH_3)on the electron distribution in the molecular catalysts.Strategic placement of-OCH_3 groups in the macrocycles leads to a favourable oxidation state of the Cu centres and subsequent C-C coupling to form C_(2) products.This research provides fundamental insights into the design and optimization of binuclear Cu molecular catalysts for the electrochemical conversion of CO_(2) to value-added C_(2) products.展开更多
A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactiva...A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactivation of the catalysts were studied. N2 adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, H2 temperature‐programmed reduction, NH3 temperature‐programmed desorption, X‐ray photoelectron spectroscopy (XPS), thermal gravimetric analysis and Fourier transform infrared spectroscopy were used to character‐ize the catalysts. The 8Fe‐8Mn/Al2O3 catalyst gave 99%of NO conversion at 150?? and more than 92.6%NO conversion was obtained in a wide low temperature range of 90–210??. XPS analysis demonstrated that the Fe3+was the main iron valence state on the catalyst surface and the addition of Mn increased the accumulation of Fe on the surface. The higher specific surface area, enhanced dispersion of amorphous Fe and Mn, improved reduction properties and surface acidity, lower binding energy, higher Mn4+/Mn3+ratio and more adsorbed oxygen species resulted in higher NO conversion for the 8Fe‐8Mn/Al2O3 catalyst. In addition, the SCR activity of the 8Fe‐8Mn/Al2O3 cata‐lyst was only slightly decreased in the presence of H2O and SO2, which indicated that the catalyst had better tolerance to H2O and SO2. The reaction temperature was crucial for the SO2 resistance of catalyst and the decrease of catalytic activity caused by SO2 was mainly due to the sulfate salts formed on the catalyst.展开更多
A titania pillared interlayered clay(Ti-PILC) supported vanadia catalyst(V2O5/TiO2-PILC) was prepared by wet impregnation for the selective catalytic reduction(SCR) of NO with ammonia. Compared to the traditiona...A titania pillared interlayered clay(Ti-PILC) supported vanadia catalyst(V2O5/TiO2-PILC) was prepared by wet impregnation for the selective catalytic reduction(SCR) of NO with ammonia. Compared to the traditional V2O5/TiO2 and V2O5-MoO3/TiO2 catalysts, the V2O5/TiO2-PILC catalyst exhibited a higher activity and better SO2 and H2O resistance in the NH3-SCR reaction. Characterization using TPD, in situ DRIFT and XPS showed that surface sulfate and/or sulfite species and ionic SO4^(2-)species were formed on the catalyst in the presence of SO2. The ionic SO4^(2-) species on the catalyst surface was one reason for deactivation of the catalyst in SCR. The formation of the ionic SO4^(2-) species was correlated with the amount of surface adsorbed oxygen species. Less adsorbed oxygen species gave less ionic SO4^(2-) species on the catalyst.展开更多
The V/O5-WO3-MoOy'TiO2 honeycomb catalyst was prepared with industrial grade chemicals. The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD), scanning electron micrograph (SEM...The V/O5-WO3-MoOy'TiO2 honeycomb catalyst was prepared with industrial grade chemicals. The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD), scanning electron micrograph (SEM) and mercury porosimetry. The NOx conversion and durability were investigated on a pilot plant test set under the actual operational conditions of a coal fired boiler. The catalyst monolith had good formability with mass per- centage of V : W : Mo : TiO2 : fiber glass = 1 : 4.5 : 4.5 : 72 : 18. Vanadium, tungsten and molybdenum species were highly dispersed on anatase TiO2 without causing the transformation of anatase TiO2 to ruffle by calcining under a current of air at 450℃ for 4.5 h, but there were some degrees of crystal distortion. The catalyst particle sizes were almost uniform with close pile-up and the pore structure was regular with complete macro-pore formation and large specific surface area. The NOx conversion was sensitive to temperature but nearly insensitive to NH3. The catalyst showed strong adaptability to NOx concentration with activity above 80% in the range of 615 1640 mg.m-3. Within the range of 720-8640 h continuous operation, the NOx conversion dropped at a rate of about 1% reduction per 600 h.展开更多
The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The...The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The intrinsic kinetics of SCR of NO with NH3 over CuO/γ-Al2O3/cordierite catalyst has been measured in a fixed-bed reactor in the absence of internal and external diffusions. The experimental results show that the reaction rate can be quantified by a first-order expression with activation energy Eá of 94.01 kJ·mol-1 and the corresponding p re-exponential factor A′ of 3.39×108 cm3·g-1·s-1 when NH3 is excessive. However, when NH3 is not enough, an E ley-Rideal kinetic model based on experimental data is derived with Ea of 105.79 kJ·mol-1, the corresponding A of 2 .94×109 cm3·g-1·s-1, heat of adsorption-Hads of 87.90 kJ·mol-1 and the corresponding Aads of 9.24 cm3·mol-1. The intrinsic kinetic model obtained was incorporated in a 3D mathematical model of monolithic reactor, and the agreement of the prediction with experimental data indicates that the present kinetic model is adequate for the reac-tor design and engineering scale-up.展开更多
This work tries to identify the relationship between geometric configuration of monolith catalysts, and transfer and reaction performances for selective catalytic reduction of N2O with CO. Monolith catalysts with five...This work tries to identify the relationship between geometric configuration of monolith catalysts, and transfer and reaction performances for selective catalytic reduction of N2O with CO. Monolith catalysts with five different channel shapes (circle, regular triangle, rectangle, square and hexagon), was investigated to make a comprehensive comparison of their pressure drop, heat transfer Nu number, mass transfer Sh number and N2O conversion. It was found that monolith catalysts have a much lower pressure drop than that of traditional packed bed, and for monolith catalysts with different channel shapes, pressure drop decreases in the order of regular triangle > rectangle > square > hexagon > circle. The order of Nu is in regular triangle > rectangle ≈ square > hexagon > circle, similar to that of Sh. N2O conversion follows the order of regular triangle > rectangular ≈ square ≈ circle > hexagon. The results indicate that chemical reaction including internal diffusion is the controlling step in the selective catalytic reduction of N2O removal with CO. In addition, channel size and gas velocity also have influence on N2O conversion and pressure drop.展开更多
The selective catalytic reduction (SCR) of NOx with NH3 has been proven to be an efficient technology for NOx conversion to N2. However, the catalysts used for SCR usually suffer from the problem of sulfur poisoning...The selective catalytic reduction (SCR) of NOx with NH3 has been proven to be an efficient technology for NOx conversion to N2. However, the catalysts used for SCR usually suffer from the problem of sulfur poisoning which seriously limits their practical application. This review summarized sulfur poisoning mechanisms of various SCR deNG catalysts and strategies to reduce deactivation caused by SO2 such as doping metals, controlling the structures and morphologies of the catalysts, and selecting appropriate supports. The methods and procedures of catalysts preparation and the reaction conditions also have effect on SO2-resistance of the catalysts. Several novel catalyst systems that exhibited good SO2 resistance are also introduced. This paper could provide guidance for the development of highly efficient sulfur-tolerant deNOx catalysts.展开更多
Transition metals doped Mn-based catalysts were prepared via ultrasonic immersing method for the selective catalytic reduction (SCR) of NOx from fuel gas. The Catalysts’ DeNOx efficiency and tolerance to sulfur were ...Transition metals doped Mn-based catalysts were prepared via ultrasonic immersing method for the selective catalytic reduction (SCR) of NOx from fuel gas. The Catalysts’ DeNOx efficiency and tolerance to sulfur were investigated in the paper. XRD results demonstrate high dispersion of Mn, Ce and M (Pr, Y, Zr, W) elements on TiO2 carrier, which is favor for reduction of active materials content. Mn-Ce-W catalyst presents uniform particle size about 500 nm to 800 nm from SEM pictures and shows the best NOx conversion of 93.2% at 200°C and 98.4% at 250°C, respectively. Sulfur tolerance analysis indicated that transition metals M can improve the catalysts’ performance when 0.01% SO2 exists in the fuel gas, because metal doping into the Mn-Ce catalyst can inhibit the sulfate deposition, especially metal sulfate, on the catalyst, which can be seen from the Fourier infrared spectrum.展开更多
Waste selective catalytic reduction(SCR)catalyst as a hazardous waste has a significant impact on the environment and human health.In present study,a novel technology for thermal treatment of waste SCR catalyst was pr...Waste selective catalytic reduction(SCR)catalyst as a hazardous waste has a significant impact on the environment and human health.In present study,a novel technology for thermal treatment of waste SCR catalyst was proposed by adding it to sinter mix for iron ore sintering.The influences of coke rate on the flame front propagation,sinter microstructure,and sinter quality during sintering co-processing the waste SCR catalyst process were studied.In situ tests results indicated the maximum sintering bed temperature increased at higher coke rate,indicating more liquid phase generated and higher airflow resistance.The sintering time was longer and the calculated flame front speed dropped at higher coke rate.Sinter microstructure results found the coalescence and reshaping of bubbles were more fully with increasing coke rate.The porosity dropped from 35.28%to 25.66%,the pore average diameter of large pores decreased from 383.76μm to 311.43μm.With increasing coke rate,the sinter indexes of tumbler index,productivity,and yield,increased from 33.2%,9.2 t·m^(-2)·d^(-1),28.9%to 58.0%,36.0 t·m^(-2)·d^(-1),68.9%,respectively.Finally,a comprehensive index was introduced to systematically assess the influence of coke rate on sinter quality,which rose from 100 to 200 when coke rate was increased from 3.5%(mass)to 5.5%(mass).展开更多
One of the challenges for catalytic CO_(2)reduction is to control product selectivity,and new findings that can modify selectivity would be transformative.Herein,two kinds of TiO_(2)(homemade and commercial)with the s...One of the challenges for catalytic CO_(2)reduction is to control product selectivity,and new findings that can modify selectivity would be transformative.Herein,two kinds of TiO_(2)(homemade and commercial)with the same crystal phase but different surface properties are chosen as supports to prepare Ni-based catalysts for CO_(2)reduction,which show distinctly different product selectivity for CO_(2)reduction to CH_(4) or CO,as well as the CO_(2)conversion.The catalysts based on the homemade TiO_(2)support are highly selective for CH_(4) formation,while the latter ones are about 100%selective for CO formation under the same reaction conditions.In addition,the former ones are much active(more than 3 times)than the latter ones.We found that the collaborative contribution of Ti^(3+)and Ni^(2+)species and the electronic metal-support interactions effect maybe the main driving force behind for determining the product selectivity.Methane is almost exclusively produced over the catalysts with abundant Ti^(3+)and Ni^(2+)species and greater electronic metal-support interaction,otherwise,it will give priority to CO generation.The addition of CeO_(2)can reduce the Ni particle size and improve the dispersion of Ni nanoparticles,as well as create more Ti^(3+)species,contributing to the enhancement of CO_(2)conversion,but shows a negligible effect on product selectivity.Furthermore,the in situ DRIFT experiments and kinetic experiments indicate that the CO route is probably involved in the CO_(2)reduction process over the homemade Ni-CeO_(2)/TiO_(2)-CO catalyst with abundant Ti^(3+)and Ni^(2+)species and a strong electronic transform effect.展开更多
Direct electrochemical reduction of CO2 to multicarbon products is highly desirable, yet challenging. Here, we present a potentiostatic pulse-electrodeposition of high-aspect-ratio CuxAuy nanowire arrays (NWAs) as hig...Direct electrochemical reduction of CO2 to multicarbon products is highly desirable, yet challenging. Here, we present a potentiostatic pulse-electrodeposition of high-aspect-ratio CuxAuy nanowire arrays (NWAs) as high-performance electrocatalysts for the CO2 reduction reaction (CO2RR). The surface electronic structure related to the Cu:Au ratio in the CuxAuy NWAs could be facilely modulated by controlling the electrodeposition potential and the as-fabricated CuxAuy NWAs could be directly used as the catalytic electrode for the CO2RR. The morphology of the high-aspect-ratio nanowire array significantly lowers the onset potential of the alcohol formation due to the diffusion-induced enhancement of the local pH and CO concentration near the nanowire surface. Besides, the properly adjusted surface electronic structure of the CuxAuy NWA enables the adsorption of CO and facilitates the subsequent CO reduction to ethanol via the C-C coupling pathway. Owing to the synergistic effect of morphology and electronic structure, the optimized CuxAuy NWA selectively reduces CO2 to ethanol at low potentials of -0.5——0.7 V vs. RHE with a highest Faradaic efficiency of 48%. This work demonstrates the feasibility to optimize the activity and selectivity of the Cu-based electrocatalysts toward multicarbon alcohols for the CO2RR via simultaneous adjustment of the electronic structure and morphology of the catalysts.展开更多
Bimetallic Cr-In/H-SSZ-13 zeolites were prepared by wet impregnation and investigated for selective catalytic reduction of nitric oxide by methane(CH4-SCR).Reduction-oxidation treatments led to close contact and inter...Bimetallic Cr-In/H-SSZ-13 zeolites were prepared by wet impregnation and investigated for selective catalytic reduction of nitric oxide by methane(CH4-SCR).Reduction-oxidation treatments led to close contact and interaction between Cr and In species in these zeolites,as revealed by transmission electron microscopy and X-ray photoelectron spectroscopy.Compared to monometallic Cr/H-SSZ-13 and In/H-SSZ-13,the bimetallic catalyst system exhibited dramatically enhanced CH4-SCR performance,i.e.,NO conversion greater than 90%and N2 selectivity greater than 99%at 550°C in the presence of 6%H2O under a high gas hourly space velocity of 75 000/h.The bimetallic Cr-In/H-SSZ-13 showed very good stability in CH4-SCR with no significant activity loss for over 160 h.Catalytic data revealed that CH4 and NO were activated on the In and Cr sites of Cr-In/H-SSZ-13,respectively,both in the presence of O2 during CH4-SCR.展开更多
Zero or negative emissions of carbon dioxide(CO2)is the need of the times,as inexorable rising and alarming levels of CO2 in the atmosphere lead to global warming and severe climate change.The electrochemical CO2 redu...Zero or negative emissions of carbon dioxide(CO2)is the need of the times,as inexorable rising and alarming levels of CO2 in the atmosphere lead to global warming and severe climate change.The electrochemical CO2 reduction(eCO2R)to value‐added fuels and chemicals by using renewable electricity provides a cleaner and more sustainable route with economic benefits,in which the key is to develop clean and economical electrocatalysts.Carbon‐based catalyst materials possess desirable properties such as high offset potential for H2 evolution and chemical stability at the negative applied potential.Although it is still challenging to achieve highly efficient carbon‐based catalysts,considerable efforts have been devoted to overcoming the low selectivity,activity,and stability.Here,we summarize and discuss the recent progress in carbon‐based metal‐free catalysts including carbon nanotubes,carbon nanofibers,carbon nanoribbons,graphene,carbon nitride,and diamonds with an emphasis on their activity,product selectivity,and stability.In addition,the key challenges and future potential approaches for efficient eCO2R to low carbon‐based fuels are highlighted.For a good understanding of the whole history of the development of eCO2R,the CO2 reduction reactions,principles,and techniques including the role of electrolytes,electrochemical cell design and evaluation,product selectivity,and structural composition are also discussed.The metal/metal oxides decorated with carbon‐based electrocatalysts are also summarized.We aim to provide insights for further development of carbon‐based metal‐free electrocatalysts for CO2 reduction from the perspective of both fundamental understanding and technological applications in the future.展开更多
The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined wi...The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.展开更多
基金supported by Jiangsu Natural Science Foundation (No. BK2012347)the National High Technology and Development Program of China (863 Programs, No.2007AA061802)
文摘Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, such as N2 physisorption, X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), in situ Fourier transform infrared spectroscopy (in situ FT-IR) and temperature-programmed reduction (TPR) and their catalytic activities were evaluated with the selective catalytic reduction (SCR) of NOx by NH3. It was found that with the addition of Cr, more NO could be removed in the low-temperature window (below 120 ℃). Among the tested catalysts, Mn-Fe- Cr (2 : 2 : 1) catalyst exhibited the best catalytic performance at 80 ℃ with the NO conversion higher than 90%. The combination of the reaction and characterization results indicated that (1) the strong interaction among tertiary metal oxides existed in the catalysts when Cr was appropriately added, which made the active components better dispersed with less agglomeration and sintering and the largest BET specific surface area could be obtained; (2) Cr improved the low-temperature reducibility of the catalyst and promoted the formation of the active intermediate (-NH3+), which favored the low-temperature SCR reaction.
文摘Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.
文摘In this study,a MnOx@TiO2 core‐shell catalyst prepared by a two‐step method was used for the low‐temperature selective catalytic reduction of NOx with NH3.The catalyst exhibits high activity,high stability,and excellent N2 selectivity.Furthermore,it displays better SO2 and H2O tolerance than its MnOx,TiO2,and MnOx/TiO2 counterparts.The prepared catalyst was characterized systematically by transmission electron microscopy,high‐resolution transmission electron microscopy,X‐ray diffraction,Raman,BET,X‐ray photoelectron spectroscopy,NH3 temperature‐programmed desorption and H2 temperature‐programmed reduction analyses.The optimized MnOx@TiO2 catalyst exhibits an obvious core‐shell structure,where the TiO2 shell is evenly distributed over the MnOx nanorod core.The catalyst also presents abundant mesopores,Lewis‐acid sites,and high redox capability,all of which enhance its catalytic performance.According to the XPS results,the decrease in the number of Mn4+active centers after SO2 poisoning is significantly lower in MnOx@TiO2 than in MnOx/TiO2.The core‐shell structure is hence able to protect the catalytic active sites from H2O and SO2 poisoning.
基金supported by the National Natural Science Foundation of China (No.21206108)Tianjin Municipal Science and Technology Commission (No.14JCYBJC21200)
文摘In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of NO using NH<sub>3</sub>. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO<sub>2</sub>/H<sub>2</sub>O resistance of the catalysts. The results showed that the FeCe(1:6)O<sub> x </sub> (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O<sub> x </sub> catalyst had the highest NO conversion with an activity of 94-99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h<sup>−1</sup>. The NO conversion for the FeCe(1:6)O<sub> x </sub> catalyst also reached 80-98% between 200 and 300 °C at a space velocity of 204,000 h<sup>−1</sup>. In addition, the FeCe(1:6)O<sub> x </sub> catalyst demonstrated good stability in a 10-h SCR reaction at 200-300 °C. Even in the presence of SO<sub>2</sub> and H<sub>2</sub>O, the FeCe(1:6)O<sub> x </sub> catalyst exhibited good SCR performance.
文摘The metal oxide catalyst was prepared by loading MnOx and FeOx on carbon nano-tubes (CNTs) with impregnation method. Then the catalyst was characterized by BET and XPS, and the effect of adding FeOx on MnOx/CNTs catalyst at the low-temperature selective catalytic reduction of NO with NH3 was investigated. The results showed that the active components were loaded suc-cessfully and easily on the carriers by impregnation. The Mn-Fe/CNTs catalyst was chose 10% Fe(NO3)3 solution to impregnate Mn-Fe/CNTs. The species of active components loaded on the catalyst were Fe2O3. The different concentration of impregnant solution played an important role for NO conversion in SCR with NH3. With the increase of the concentration of impregnant solution, the NO conversion of catalysts was increasing initially then decreasing.
基金Open Fund of Key Laboratory of Ministry of Education for Metallurgical Emission Reduction and Comprehensive Utilization of Resources,China(No.JKF19-08)General Project of Science and Technology Plan of Yunnan Science and Technology Department,China(No.2019FB077)+1 种基金Industrialization Cultivation Project of Scientific Research Fund of Yunnan Provincial Department of Education,China(No.2016CYH07)Top Young Talents of Yunnan Ten Thousand Talents Plan,China(No.YNWR-QNBJ-2019-263)。
文摘To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstructure,the specific surface area,the pore volume,the crystal structure,and functional groups presented in the prepared Cu2O/AC catalysts were thoroughly characterized.By using scanning electron microscopy(SEM),nitrogen adsorption/desorption isotherms,Fourier-transform infrared(FTIR)spectroscopy and X-ray diffractometry(XRD),the effects of Cu2O loading and calcination temperature on Cu2O/AC catalysts were investigated at low temperature(150℃).The research shows that Cu on the Cu2O/AC catalyst is in the form of Cu2O with good crystalline performance and is spherical and uniformly dispersed on the AC surface.The loading of Cu2O increases the active sites and the specific surface area of the reaction gas contact,which is conducive to the rapid progress of the carbon monoxide selective catalytic reduction(CO-SCR)reaction.When the loading of Cu2O was 8%and the calcination temperature was 500℃,the removal rate of NOx facilitated by the Cu2O/AC catalyst reached 97.9%.These findings provide a theoretical basis for understanding the denitrification of sintering flue gas.
基金the HUST-QMUL Strategic Partnership Research Funding(No.2022-HUST-QMUL-SPRF-03),which funded the project“Design of Binuclear Copper Electrocatalysts for CO_(2) Conversion from First Principles”the China Scholarship Council for financial support。
文摘Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding the copper metal centres.This investigation,employing density functional theory calculations,focuses on a novel family of binuclear Cu molecular catalysts.The modulation of their coordination configuration through the introduction of organic groups aims to assess their efficacy in converting CO_(2) to C_(2)products.Our findings highlight the crucial role of chemical valence state in shaping the characteristics of binuclear Cu catalysts,consequently influencing the eCO_(2)R behaviour,Notably,the Cu(Ⅱ)Cu(Ⅱ)macrocycle catalyst exhibits enhanced suppression of the hydrogen evolution reaction(HER),facilitating proton trans fer and the eCO_(2)R process.Fu rthermore,we explo re the impact of diverse electro n-withdrawing and electron-donating groups coordinated to the macrocycle(R=-F,-H,and-OCH_3)on the electron distribution in the molecular catalysts.Strategic placement of-OCH_3 groups in the macrocycles leads to a favourable oxidation state of the Cu centres and subsequent C-C coupling to form C_(2) products.This research provides fundamental insights into the design and optimization of binuclear Cu molecular catalysts for the electrochemical conversion of CO_(2) to value-added C_(2) products.
基金supported by the National High Technology Research and Development Program of China (863 Program,2015AA03A401)the National Natural Science Foundation of China (51276039)+1 种基金the Fundamental Research Funds for the Central Universities (020514380020,020514380030)the Postdoctoral Science Foundation of Jiangsu Province,China (1501033A)~~
文摘A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactivation of the catalysts were studied. N2 adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, H2 temperature‐programmed reduction, NH3 temperature‐programmed desorption, X‐ray photoelectron spectroscopy (XPS), thermal gravimetric analysis and Fourier transform infrared spectroscopy were used to character‐ize the catalysts. The 8Fe‐8Mn/Al2O3 catalyst gave 99%of NO conversion at 150?? and more than 92.6%NO conversion was obtained in a wide low temperature range of 90–210??. XPS analysis demonstrated that the Fe3+was the main iron valence state on the catalyst surface and the addition of Mn increased the accumulation of Fe on the surface. The higher specific surface area, enhanced dispersion of amorphous Fe and Mn, improved reduction properties and surface acidity, lower binding energy, higher Mn4+/Mn3+ratio and more adsorbed oxygen species resulted in higher NO conversion for the 8Fe‐8Mn/Al2O3 catalyst. In addition, the SCR activity of the 8Fe‐8Mn/Al2O3 cata‐lyst was only slightly decreased in the presence of H2O and SO2, which indicated that the catalyst had better tolerance to H2O and SO2. The reaction temperature was crucial for the SO2 resistance of catalyst and the decrease of catalytic activity caused by SO2 was mainly due to the sulfate salts formed on the catalyst.
基金supported by the National Natural Science Foundation of China(21277009,21577005)~~
文摘A titania pillared interlayered clay(Ti-PILC) supported vanadia catalyst(V2O5/TiO2-PILC) was prepared by wet impregnation for the selective catalytic reduction(SCR) of NO with ammonia. Compared to the traditional V2O5/TiO2 and V2O5-MoO3/TiO2 catalysts, the V2O5/TiO2-PILC catalyst exhibited a higher activity and better SO2 and H2O resistance in the NH3-SCR reaction. Characterization using TPD, in situ DRIFT and XPS showed that surface sulfate and/or sulfite species and ionic SO4^(2-)species were formed on the catalyst in the presence of SO2. The ionic SO4^(2-) species on the catalyst surface was one reason for deactivation of the catalyst in SCR. The formation of the ionic SO4^(2-) species was correlated with the amount of surface adsorbed oxygen species. Less adsorbed oxygen species gave less ionic SO4^(2-) species on the catalyst.
基金Supported by the Science and Technology Development Planning of Shandong Province(2011GSF11716)China Scholarship Council for Researching in University of Birmingham
文摘The V/O5-WO3-MoOy'TiO2 honeycomb catalyst was prepared with industrial grade chemicals. The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD), scanning electron micrograph (SEM) and mercury porosimetry. The NOx conversion and durability were investigated on a pilot plant test set under the actual operational conditions of a coal fired boiler. The catalyst monolith had good formability with mass per- centage of V : W : Mo : TiO2 : fiber glass = 1 : 4.5 : 4.5 : 72 : 18. Vanadium, tungsten and molybdenum species were highly dispersed on anatase TiO2 without causing the transformation of anatase TiO2 to ruffle by calcining under a current of air at 450℃ for 4.5 h, but there were some degrees of crystal distortion. The catalyst particle sizes were almost uniform with close pile-up and the pore structure was regular with complete macro-pore formation and large specific surface area. The NOx conversion was sensitive to temperature but nearly insensitive to NH3. The catalyst showed strong adaptability to NOx concentration with activity above 80% in the range of 615 1640 mg.m-3. Within the range of 720-8640 h continuous operation, the NOx conversion dropped at a rate of about 1% reduction per 600 h.
基金Supported by the National Natural Science Foundation of China (20821004 20736001 21076008) the Research Fund for the Doctoral Program of Higher Education of China (2090010110002)
文摘The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The intrinsic kinetics of SCR of NO with NH3 over CuO/γ-Al2O3/cordierite catalyst has been measured in a fixed-bed reactor in the absence of internal and external diffusions. The experimental results show that the reaction rate can be quantified by a first-order expression with activation energy Eá of 94.01 kJ·mol-1 and the corresponding p re-exponential factor A′ of 3.39×108 cm3·g-1·s-1 when NH3 is excessive. However, when NH3 is not enough, an E ley-Rideal kinetic model based on experimental data is derived with Ea of 105.79 kJ·mol-1, the corresponding A of 2 .94×109 cm3·g-1·s-1, heat of adsorption-Hads of 87.90 kJ·mol-1 and the corresponding Aads of 9.24 cm3·mol-1. The intrinsic kinetic model obtained was incorporated in a 3D mathematical model of monolithic reactor, and the agreement of the prediction with experimental data indicates that the present kinetic model is adequate for the reac-tor design and engineering scale-up.
基金Supported by the National Natural Science Foundation of China (21121064, 21076008) the Projects in the National Science & Technology Pillar Program During the 12th Five-Year Plan Period (2011BAC06B04)
文摘This work tries to identify the relationship between geometric configuration of monolith catalysts, and transfer and reaction performances for selective catalytic reduction of N2O with CO. Monolith catalysts with five different channel shapes (circle, regular triangle, rectangle, square and hexagon), was investigated to make a comprehensive comparison of their pressure drop, heat transfer Nu number, mass transfer Sh number and N2O conversion. It was found that monolith catalysts have a much lower pressure drop than that of traditional packed bed, and for monolith catalysts with different channel shapes, pressure drop decreases in the order of regular triangle > rectangle > square > hexagon > circle. The order of Nu is in regular triangle > rectangle ≈ square > hexagon > circle, similar to that of Sh. N2O conversion follows the order of regular triangle > rectangular ≈ square ≈ circle > hexagon. The results indicate that chemical reaction including internal diffusion is the controlling step in the selective catalytic reduction of N2O removal with CO. In addition, channel size and gas velocity also have influence on N2O conversion and pressure drop.
基金Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministrythe National Natural Science Foundation of China(21506150)
文摘The selective catalytic reduction (SCR) of NOx with NH3 has been proven to be an efficient technology for NOx conversion to N2. However, the catalysts used for SCR usually suffer from the problem of sulfur poisoning which seriously limits their practical application. This review summarized sulfur poisoning mechanisms of various SCR deNG catalysts and strategies to reduce deactivation caused by SO2 such as doping metals, controlling the structures and morphologies of the catalysts, and selecting appropriate supports. The methods and procedures of catalysts preparation and the reaction conditions also have effect on SO2-resistance of the catalysts. Several novel catalyst systems that exhibited good SO2 resistance are also introduced. This paper could provide guidance for the development of highly efficient sulfur-tolerant deNOx catalysts.
文摘Transition metals doped Mn-based catalysts were prepared via ultrasonic immersing method for the selective catalytic reduction (SCR) of NOx from fuel gas. The Catalysts’ DeNOx efficiency and tolerance to sulfur were investigated in the paper. XRD results demonstrate high dispersion of Mn, Ce and M (Pr, Y, Zr, W) elements on TiO2 carrier, which is favor for reduction of active materials content. Mn-Ce-W catalyst presents uniform particle size about 500 nm to 800 nm from SEM pictures and shows the best NOx conversion of 93.2% at 200°C and 98.4% at 250°C, respectively. Sulfur tolerance analysis indicated that transition metals M can improve the catalysts’ performance when 0.01% SO2 exists in the fuel gas, because metal doping into the Mn-Ce catalyst can inhibit the sulfate deposition, especially metal sulfate, on the catalyst, which can be seen from the Fourier infrared spectrum.
基金supported by the National Natural Science Foundation of China(52036008).
文摘Waste selective catalytic reduction(SCR)catalyst as a hazardous waste has a significant impact on the environment and human health.In present study,a novel technology for thermal treatment of waste SCR catalyst was proposed by adding it to sinter mix for iron ore sintering.The influences of coke rate on the flame front propagation,sinter microstructure,and sinter quality during sintering co-processing the waste SCR catalyst process were studied.In situ tests results indicated the maximum sintering bed temperature increased at higher coke rate,indicating more liquid phase generated and higher airflow resistance.The sintering time was longer and the calculated flame front speed dropped at higher coke rate.Sinter microstructure results found the coalescence and reshaping of bubbles were more fully with increasing coke rate.The porosity dropped from 35.28%to 25.66%,the pore average diameter of large pores decreased from 383.76μm to 311.43μm.With increasing coke rate,the sinter indexes of tumbler index,productivity,and yield,increased from 33.2%,9.2 t·m^(-2)·d^(-1),28.9%to 58.0%,36.0 t·m^(-2)·d^(-1),68.9%,respectively.Finally,a comprehensive index was introduced to systematically assess the influence of coke rate on sinter quality,which rose from 100 to 200 when coke rate was increased from 3.5%(mass)to 5.5%(mass).
基金supported by the National Natural Science Foundation of China(No.51774159)the Open Project Program of the State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2020-KF-25)the Qinglan Project of Kunming University of Science and Technology。
文摘One of the challenges for catalytic CO_(2)reduction is to control product selectivity,and new findings that can modify selectivity would be transformative.Herein,two kinds of TiO_(2)(homemade and commercial)with the same crystal phase but different surface properties are chosen as supports to prepare Ni-based catalysts for CO_(2)reduction,which show distinctly different product selectivity for CO_(2)reduction to CH_(4) or CO,as well as the CO_(2)conversion.The catalysts based on the homemade TiO_(2)support are highly selective for CH_(4) formation,while the latter ones are about 100%selective for CO formation under the same reaction conditions.In addition,the former ones are much active(more than 3 times)than the latter ones.We found that the collaborative contribution of Ti^(3+)and Ni^(2+)species and the electronic metal-support interactions effect maybe the main driving force behind for determining the product selectivity.Methane is almost exclusively produced over the catalysts with abundant Ti^(3+)and Ni^(2+)species and greater electronic metal-support interaction,otherwise,it will give priority to CO generation.The addition of CeO_(2)can reduce the Ni particle size and improve the dispersion of Ni nanoparticles,as well as create more Ti^(3+)species,contributing to the enhancement of CO_(2)conversion,but shows a negligible effect on product selectivity.Furthermore,the in situ DRIFT experiments and kinetic experiments indicate that the CO route is probably involved in the CO_(2)reduction process over the homemade Ni-CeO_(2)/TiO_(2)-CO catalyst with abundant Ti^(3+)and Ni^(2+)species and a strong electronic transform effect.
基金supported by the Natural Science Foundation of Hunan Province (grant no. 2018JJ2485)Hunan Provincial Science and Technology Plan Project (grant nos. 2018RS3008 and 2017TP1001)+1 种基金the National Natural Science Foundation of China (grant no. 21872174)Innovation-Driven Project of Central South University (grant nos. 2016CXS031 and 2017CX003)
文摘Direct electrochemical reduction of CO2 to multicarbon products is highly desirable, yet challenging. Here, we present a potentiostatic pulse-electrodeposition of high-aspect-ratio CuxAuy nanowire arrays (NWAs) as high-performance electrocatalysts for the CO2 reduction reaction (CO2RR). The surface electronic structure related to the Cu:Au ratio in the CuxAuy NWAs could be facilely modulated by controlling the electrodeposition potential and the as-fabricated CuxAuy NWAs could be directly used as the catalytic electrode for the CO2RR. The morphology of the high-aspect-ratio nanowire array significantly lowers the onset potential of the alcohol formation due to the diffusion-induced enhancement of the local pH and CO concentration near the nanowire surface. Besides, the properly adjusted surface electronic structure of the CuxAuy NWA enables the adsorption of CO and facilitates the subsequent CO reduction to ethanol via the C-C coupling pathway. Owing to the synergistic effect of morphology and electronic structure, the optimized CuxAuy NWA selectively reduces CO2 to ethanol at low potentials of -0.5——0.7 V vs. RHE with a highest Faradaic efficiency of 48%. This work demonstrates the feasibility to optimize the activity and selectivity of the Cu-based electrocatalysts toward multicarbon alcohols for the CO2RR via simultaneous adjustment of the electronic structure and morphology of the catalysts.
文摘Bimetallic Cr-In/H-SSZ-13 zeolites were prepared by wet impregnation and investigated for selective catalytic reduction of nitric oxide by methane(CH4-SCR).Reduction-oxidation treatments led to close contact and interaction between Cr and In species in these zeolites,as revealed by transmission electron microscopy and X-ray photoelectron spectroscopy.Compared to monometallic Cr/H-SSZ-13 and In/H-SSZ-13,the bimetallic catalyst system exhibited dramatically enhanced CH4-SCR performance,i.e.,NO conversion greater than 90%and N2 selectivity greater than 99%at 550°C in the presence of 6%H2O under a high gas hourly space velocity of 75 000/h.The bimetallic Cr-In/H-SSZ-13 showed very good stability in CH4-SCR with no significant activity loss for over 160 h.Catalytic data revealed that CH4 and NO were activated on the In and Cr sites of Cr-In/H-SSZ-13,respectively,both in the presence of O2 during CH4-SCR.
基金The authors thank the financial support from the“Scientific and Technical Innovation Action Plan”Basic Research Field of the Shanghai Science and Technology Committee(19JC1410500)the Fundamental ResearchFunds for the Central Universities(2232018A3‐06)the National Natural Science Foundation of China(91645110).
文摘Zero or negative emissions of carbon dioxide(CO2)is the need of the times,as inexorable rising and alarming levels of CO2 in the atmosphere lead to global warming and severe climate change.The electrochemical CO2 reduction(eCO2R)to value‐added fuels and chemicals by using renewable electricity provides a cleaner and more sustainable route with economic benefits,in which the key is to develop clean and economical electrocatalysts.Carbon‐based catalyst materials possess desirable properties such as high offset potential for H2 evolution and chemical stability at the negative applied potential.Although it is still challenging to achieve highly efficient carbon‐based catalysts,considerable efforts have been devoted to overcoming the low selectivity,activity,and stability.Here,we summarize and discuss the recent progress in carbon‐based metal‐free catalysts including carbon nanotubes,carbon nanofibers,carbon nanoribbons,graphene,carbon nitride,and diamonds with an emphasis on their activity,product selectivity,and stability.In addition,the key challenges and future potential approaches for efficient eCO2R to low carbon‐based fuels are highlighted.For a good understanding of the whole history of the development of eCO2R,the CO2 reduction reactions,principles,and techniques including the role of electrolytes,electrochemical cell design and evaluation,product selectivity,and structural composition are also discussed.The metal/metal oxides decorated with carbon‐based electrocatalysts are also summarized.We aim to provide insights for further development of carbon‐based metal‐free electrocatalysts for CO2 reduction from the perspective of both fundamental understanding and technological applications in the future.
基金supported by the National Natural Foundation of China(21607019,21503115)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control(OVEC013)the Talent Introduction Project of Chongqing Three Gorges University~~
文摘The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.