期刊文献+
共找到5,121篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO_(2)
1
作者 Xu Zhao Naitao Gao +2 位作者 Shengcheng Wu Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期786-794,共9页
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d... CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs. 展开更多
关键词 polyethylene oxide-modified TiO_(2) film low-temperature process CsPbI_(2)Br-based all-inorganic perovskite solar cells photo-voltaic performance
下载PDF
A Tutorial Review of the Solar Power Curve: Regressions, Model Chains, and Their Hybridization and Probabilistic Extensions
2
作者 Dazhi YANG Xiang’ao XIA Martin János MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1023-1067,共45页
Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attent... Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review. 展开更多
关键词 review energy meteorology solar power curve model chain solar power prediction
下载PDF
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
3
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 All-polymer solar cells power conversion efficiency Structural order Charge generation
下载PDF
Weather-Driven Solar Power Forecasting Using D-Informer:Enhancing Predictions with Climate Variables
4
作者 Chenglian Ma Rui Han +2 位作者 Zhao An Tianyu Hu Meizhu Jin 《Energy Engineering》 EI 2024年第5期1245-1261,共17页
Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic... Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic(PV)power generation and encounter issues such as gradient explosion or disappearance when dealing with extensive time-series data.To overcome these challenges,this research presents a cutting-edge,multi-stage forecasting method called D-Informer.This method skillfully merges the differential transformation algorithm with the Informer model,leveraging a detailed array of meteorological variables and historical PV power generation records.The D-Informer model exhibits remarkable superiority over competing models across multiple performance metrics,achieving on average a 67.64%reduction in mean squared error(MSE),a 49.58%decrease in mean absolute error(MAE),and a 43.43%reduction in root mean square error(RMSE).Moreover,it attained an R2 value as high as 0.9917 during the winter season,highlighting its precision and dependability.This significant advancement can be primarily attributed to the incorporation of a multi-head self-attention mechanism,which greatly enhances the model’s ability to identify complex interactions among diverse input variables,and the inclusion of weather variables,enriching the model’s input data and strengthening its predictive accuracy in time series analysis.Additionally,the experimental results confirm the effectiveness of the proposed approach. 展开更多
关键词 power forecasting deep learning weather-driven solar power
下载PDF
Peak Shaving Strategy of Concentrating Solar Power Generation Based on Multi-Time-Scale and Considering Demand Response
5
作者 Lei Fang Haiying Dong +1 位作者 Xiaofei Zhen Shuaibing Li 《Energy Engineering》 EI 2024年第3期661-679,共19页
According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak s... According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified. 展开更多
关键词 Peak shaving strategy concentrating solar power multi-time-scale demand-side response rolling optimization
下载PDF
Low-Temperature Soft-Cover-Assisted Hydrolysis Deposition of Large-Scale TiO_2 Layer for Efficient Perovskite Solar Modules 被引量:1
6
作者 Jinjin He Enbing Bi +4 位作者 Wentao Tang Yanbo Wang Xudong Yang Han Chen Liyuan Han 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期127-134,共8页
Perovskite solar cells with TiO_2 electron transport layers exhibit power conversion efficiency(PCE) as high as 22.7% in single cells. However, the preparation process of the TiO_2 layer is adopted by an unscalable me... Perovskite solar cells with TiO_2 electron transport layers exhibit power conversion efficiency(PCE) as high as 22.7% in single cells. However, the preparation process of the TiO_2 layer is adopted by an unscalable method or requires high-temperature sintering, which precludes its potential use for mass production of flexible devices. In this study, a scalable low-temperature softcover-assisted hydrolysis(SAH) method is presented,where the precursor solution is sandwiched between a soft cover and preheated substrate to form a closed hydrolysis environment. Compact homogeneous TiO_2 films with a needle-like structure were obtained after the hydrolysis of a TiCl_4 aqueous solution. Moreover, by careful optimization of the TiO_2 fabrication conditions, a high PCE of 14.01% could be achieved for a solar module(4 × 4 cm^2) prepared using the SAH method. This method provides a novel approach for the efficient scale-up of the low-temperature TiO_2 film growth for industrial applications. 展开更多
关键词 low-temperature TiO2 LARGE-SCALE Soft-cover-assisted hydrolysis deposition Perovskite solar cell
下载PDF
Comparative Study of Solar PV Power Plant Dimensionnement Connected to Network Based on Monofacial and Bifacial Modules
7
作者 DJOSSOU Ayihaou Armand VODOUNNOU Edmond Claude +5 位作者 FANNOU Jean Louis Comlan DANSOU MidokpêRomuald SEMASSOU Guy Clarence HOUNGAN Comlan Aristide GUIDI Tognon Clotilde Thierno Amadou Barry 《Journal of Environmental Science and Engineering(A)》 CAS 2024年第1期36-44,共9页
This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to ob... This article presents the results of comparative study of two PV solar modules technologies,namely monofacial and bifacial.This study main objective is to identify conditions and parameters that make it possible to obtain better energy and economic efficiency from one or other of two technologies.The study reason lies in revival observed on bifacial module in recent years where all the major manufacturers of PV solar panels are developing them where in a few years,this technology risks being at the same price as the monofacial solar panel with better efficiency.Economic indicator used is energy levelized cost(LCOE)which is function technology type,energy productivity,annual investment and operation cost.To achieve this,a 3.685 MWc solar PV power plant was dimensioned and simulated under Matlab for a 3.5 ha site with a 2,320,740,602 FCFA budget for monofacial installation,against 1,925,188,640 FCFA for 2.73 MWc bifacial installation.The LCOE comparative analysis of two technologies calculated over a period of 25 years,showed that plant with bifacial panels is more beneficial if bifacial gain is greater than 9%.It has further been found that it is possible to gain up to 40%of invested cost if bifacial gain reaches 45%.Finally,a loss of about 10%of invested cost could be recorded if bifacial gain is less than 9%. 展开更多
关键词 solar PV power plant SIZING Monofacial panels Bifacial panels LCOE.
下载PDF
Piezoelectric Power Harvesting Process via Phase Changes of Low-Boiling-Point Medium Together with Water for Recovering Low-Temperature Heats
8
作者 Seiichi Deguchi Akinori Miyajima +8 位作者 Hajime Arimura Haruna Banno Noriyuki Kobayashi Norifumi Isu Kentaro Takagi Tsuyoshi Inoue Takashi Nozoe Seigo Saito Takahiko Sano 《Journal of Power and Energy Engineering》 2018年第11期65-77,共13页
Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures l... Low-temperature thermal energy conversions down to exergy zero to electric power must contribute energy sustainability. That is to say, reinforcements of power harvesting technologies from extremely low temperatures less than 373 K might be at least one of minimum roles for the current generations. Then, piezoelectric power harvesting process for recovering low-temperature heats was invented by using a unique biphasic operating medium of an underlying water-insoluble/low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) in small quantity and upper-layered water in large quantity. The higher piezoelectric power harvesting densities were naturally revealed with an increase in heating temperatures. Excessive cooling of the operating medium deteriorated the power harvesting efficiency. The denser operating medium was surpassingly helpful to the higher piezoelectric power harvesting density. Concretely, only about 5% density increase of main operating medium (i.e. water with dissolving alum at 0.10 mol/dm3) came to the champion piezoelectric power harvesting density of 92.6 pW/dm2 in this study, which was about 1.4 times compared to that with the original biphasic medium of pure water together with a small quantity of NOVEC. 展开更多
关键词 PIEZOELECTRIC power Generation low-temperature Heat Recovery BIPHASIC MEDIUM Phase Change Multiphase Flow power Harvesting
下载PDF
Solar Energy Resource Characteristics of Photovoltaic Power Station in Shandong Province 被引量:2
9
作者 薛德强 王新 王新堂 《Agricultural Science & Technology》 CAS 2013年第4期666-671,共6页
[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar ener... [Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar energy resources in pho-tovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan, Fushan and Juxian in 1988-2008. [Result] Solar energy in northern regions in Shandong proved most abundant, which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°, decreasing by 2°-3° compared with local latitude. Total solar radiation received by the slope with optimal angle of tilt exceeded 1 600 kw.h/(m2.a), increasing by 16% compared with horizontal planes. The maximal irradiance concluded by WRF in different regions tended to be volatile in 1 020-1 060 W/m2. [Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province. 展开更多
关键词 Shandong Province solar energy resource Photovoltaic power stations Optimum tilt angle WRF(weather research and forecasting model) Maximal daily irradiance
下载PDF
A review of low-temperature heat recovery technologies for industry processes 被引量:13
10
作者 Li Xia Renmin Liu +4 位作者 Yiting Zeng Peng Zhou Jingjing Liu Xiaorong Cao Shuguang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2227-2237,共11页
The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that... The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that there is a great potential for low-temperature heat recovery and utilization.This article provided a detailed review of recent advances in the development of low-temperature thermal upgrades,power generation,refrigeration,and thermal energy storage.The detailed description will be given from the aspects of system structure improvement,work medium improvement,and thermodynamic and economic performance evaluation.It also pointed out the development bottlenecks and future development trends of various technologies.The low-temperature heat combined utilization technology can recover waste heat in an all-round and effective manner,and has great development prospects. 展开更多
关键词 low-temperature HEAT HEAT PUMP power generation HEAT STORAGE REFRIGERATION
下载PDF
In-Situ Preparation and Thermal Shock Resistance of Mullite-Cordierite Heat Tube Material for Solar Thermal Power 被引量:6
11
作者 徐晓虹 MA Xionghua +3 位作者 WU Jianfeng CHEN Ling XU Tao ZHANG Mengqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期407-412,共6页
In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sint... In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material. 展开更多
关键词 solar thermal power generation heat transfer tube MULLITE-CORDIERITE composite ceramic
下载PDF
Economic feasibility of large-scale hydro–solar hybrid power including long distance transmission 被引量:6
12
作者 Zhenchen Deng Jinyu Xiao +3 位作者 Shikun Zhang Yuetao Xie Yue Rong Yuanbing Zhou 《Global Energy Interconnection》 2019年第4期290-299,共10页
Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that c... Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that can be bundled with solar PV to improve the economic feasibility of long-distance transmitted power. In this paper, a quantification model is established taking into account the regulating capacity of the reservoir, the characteristics of solar generation, and cost of hydro and solar PV with long-distance transmission based on the installed capacity ratio of hydro–solar hybrid power. Results indicate that for hydropower stations with high regulating capacity and generation factor of approximately 0.5, a hydro–solar installed capacity ratio of 1:1 will yield overall optimal economic performance, whereas for hydropower stations with daily regulating capacity reservoir and capacity factor of approximately 0.65, the optimal hydro–solar installed capacity ratio is approximately 1:0.3. In addition, the accuracy of the approach used in this study is verified through operation simulation of a hydro–solar hybrid system including ultra high-voltage direct current(UHVDC) transmission using two case studies in Africa. 展开更多
关键词 HYDROpower solar power Multi-energy HYBRID system Economic analysis UHVDC transmission Hydro–solar HYBRID power
下载PDF
Dynamic modeling and simulation of deploying process for space solar power satellite receiver 被引量:2
13
作者 Tingting YIN Zichen DENG +1 位作者 Weipeng HU Xindong WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第2期261-274,共14页
To reveal some dynamic properties of the deploying process for the solar power satellite via an arbitrarily large phased array (SPS-ALPHA) solar receiver, the symplectic Runge-Kutta method is used to simulate the si... To reveal some dynamic properties of the deploying process for the solar power satellite via an arbitrarily large phased array (SPS-ALPHA) solar receiver, the symplectic Runge-Kutta method is used to simulate the simplified model with the consideration of the Rayleigh damping effect. The system containing the Rayleigh damping can be separated and transformed into the equivalent nondamping system formally to insure the application condition of the symplectic Runge-Kutta method. First, the Lagrange equation with the Rayleigh damping governing the motion of the system is derived via the variational principle. Then, with some reasonable assumptions on the relations among the damping, mass, and stiffness matrices, the Rayleigh damping system is equivalently converted into the nondamping system formally, so that the symplectic Runge-Kutta method can be used to simulate the deploying process for the solar receiver. Finally, some numerical results of the symplectic Runge-Kutta method for the dynamic properties of the solar receiver are reported. The numerical results show that the proposed simplified model is valid for the deploying process for the SPS-ALPHA solar receiver, and the symplectic Runge-Kutta method can preserve the displacement constraints of the system well with excellent long-time numerical stability. 展开更多
关键词 solar power satellite Rayleigh damping separate and transform symplecticRunge-Kutta method structure preserving
下载PDF
Effect of Nano-ZrO_2 on Microstructure and Thermal Shock Behaviour of Al_2O_3/SiC Composite Ceramics Used in Solar Thermal Power 被引量:2
14
作者 徐晓虹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期285-289,共5页
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ... The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power. 展开更多
关键词 AL2O3 NANO-ZRO2 transformation toughening thermal shock resistance composite ceramics solar thermal power
下载PDF
Progress in Research and Development of Molten Chloride Salt Technology for Next Generation Concentrated Solar Power Plants 被引量:26
15
作者 Wenjin Ding Thomas Bauer 《Engineering》 SCIE EI 2021年第3期334-347,共14页
Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-c... Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed. 展开更多
关键词 solar energy Concentrated solarpower(CSP) Thermal energystorage(TES) Heat transferfluid(HTF) Supercritical carbondioxide(sCO2)power cycle Corrosion control
下载PDF
Effect of SiO_2/B_2O_3 Ratio on the Property of Borosilicate Glass Applied in Parabolic Trough Solar Power Plant 被引量:1
16
作者 田英良 SHAO Yanli +2 位作者 陆平 CHENG Jinshu LIU Wencai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期51-55,共5页
This work aimed to analyze the glass material used for sealing the end of a thermal collector in a parabolic trough solar power plant. Based on matched sealing requirements and application performance of glass and Kov... This work aimed to analyze the glass material used for sealing the end of a thermal collector in a parabolic trough solar power plant. Based on matched sealing requirements and application performance of glass and Kovar alloy 4J29, one borosilicate glass material (GD480S), whose expansion coefficient was similar to that of Kovar alloy 4J29, was studied. Moreover, the effect of the ratio of SiO2 to B203 on the glass properties was explored in detail by Fourier transform infrared spectroscopy. As the SiO2 to B203 ratio in the glass increased from 4.18 to 5.77, the expansion coefficient showed a decreasing trend from 4.95×10-6/℃ to 4.55℃ 10-6/℃. In addition, the water resistance performance improved, enabling the glass material to seal well with the alloy for application in a trough solar power plant. Thus, the increase in the SiO2 to B2O3 ratio made the glass structure more compact and improved the glass performance to meet the requirements of an industrial tubular receiver. 展开更多
关键词 trough solar power plant borosilicate glass component and property FTIR
下载PDF
Energy conversion materials for the space solar power station 被引量:2
17
作者 任晓娜 葛昌纯 +6 位作者 陈志培 伊凡 涂用广 张迎春 王立 刘自立 关怡秋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期124-131,共8页
Since it was first proposed,the space solar power station(SSPS)has attracted great attention all over the world;it is a huge space system and provides energy for Earth.Although several schemes and abundant studies on ... Since it was first proposed,the space solar power station(SSPS)has attracted great attention all over the world;it is a huge space system and provides energy for Earth.Although several schemes and abundant studies on the SSPS have been proposed and conducted,it is still not realized.The reason why SSPS is still an idea is not only because it is a giant and complex project,but also due to the requirement for various excellent space materials.Among the diverse required materials,we believe energy materials are the most important.Herein,we review the space energy conversion materials for the SSPS. 展开更多
关键词 space solar power station photovoltaic cell thermoelectric materials LASERS
下载PDF
Preparation and Characterization of Andalusite Ceramic Used for Solar Thermal Power Generation 被引量:1
18
作者 吴建锋 CHENG Hao +3 位作者 XU Xiaohong ZHOU Yang HE Dezhi LIU Yi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第3期422-427,共6页
High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al2O3 and partially stabilized zireonia were used as the raw materials,... High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al2O3 and partially stabilized zireonia were used as the raw materials, and in-situ synthesis of cordierite was adopted to fabricate thermal storage material for solar thermal power generation via pressureless sintering. The phase compositions, microstructures and thermal shock resistances of the sintered samples were analyzed by XRD, SEM and EDS, and the corresponding mechanical properties were measured. The results show that the major phases of the samples are mullite and zirconium silicate, and the pores distribute uniformly. After being sintered at 1 460℃C, A4 sample exhibits a better mechanical performance and thermal shock resistance, its loss rate of bending strength after 30 cycles thermal shock is 3.04%, the bulk density and bending strength are 2.86 g.cm^-3 and 139.66 MPa, respectively. The better thermal shock resistance of the sample is closely related to the effect of zirconium silicate, such as its uniform distribution, nested growth with mullite, low thermal expansion coefficient, high thermal conductivity, etc. This ceramic can be widely used as one of potential thermal storage materials of solar thermal power generation system. 展开更多
关键词 andalnsite MULLITE thermal storage ceramics thermal shock resistance solar thermal power generation
下载PDF
Reliability Assessment Considering the Coordination of Wind Power, Solar Energy and Energy Storage 被引量:35
19
作者 WANG Haiying BAI Xiaomin XU Jing 《中国电机工程学报》 EI CSCD 北大核心 2012年第13期I0003-I0003,186,共1页
风光储联合发电系统并网后必须采取策略与系统之间实现协调调度与运行才可在保证可靠性的前提下最大化利用可再生能源,但现有的可靠性评估中还缺少对大规模风光储联合发电系统协调运行的考虑。针对此问题,基于序贯蒙特卡罗仿真方法,... 风光储联合发电系统并网后必须采取策略与系统之间实现协调调度与运行才可在保证可靠性的前提下最大化利用可再生能源,但现有的可靠性评估中还缺少对大规模风光储联合发电系统协调运行的考虑。针对此问题,基于序贯蒙特卡罗仿真方法,建立了风电、光伏和储能系统的发电可靠性评估模型,并提出了新的协调调度策略。模型综合考虑了风速、太阳光辐照度、环境温度以及2种新能源发电技术的能量变换特性和储能系统的充放电约束等因素。这些模型被应用到IEEERTS79中,通过在Matlab中编制程序进行仿真计算,考察不同的协调运行策略、联合发电系统容量配置以及储能特性对于系统裕度的影响。评估结果可为联合发电系统并网规划与设计提供参考。 展开更多
关键词 太阳能光伏发电 可靠性评估 风力发电 能源储存 蒙特卡罗方法 混合发电系统 经营风险 能源存储
下载PDF
Overview of hydro–wind–solar power complementation development in China 被引量:2
20
作者 Sheng’an Zheng Gangliang Qian 《Global Energy Interconnection》 2019年第4期285-289,共5页
1Introduction Hydropower generation in China started over a century ago, greatly contributing to their economic and social development. Wind power and photovoltaic (PV) power generation began on a large scale in the 2... 1Introduction Hydropower generation in China started over a century ago, greatly contributing to their economic and social development. Wind power and photovoltaic (PV) power generation began on a large scale in the 21st century. 展开更多
关键词 solar power COMPLEMENTATION OVERVIEW of HYDRO
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部