With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV sy...With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV system is controlled to keep grid connected, as well as inject reactive current to grid when fault occurs. The mathematical model of PV system is established and the fault characteristic is studied with respect to the control strategy. By analyzing the effect of reactive power supplied by the PV system to the point of common coupling (PCC) voltage, this paper proposes an adaptive voltage support control strategy to enhance the fault ride-through capability of PV system. The control strategy fully utilizes the PV system’s capability of voltage support and takes the safety of equipment into account as well. At last, the proposed control strategy is verified by simulation.展开更多
The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT ope...The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM.展开更多
In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) ...In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.展开更多
Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive p...Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive power injecting into a grid but also implements other importance duties as well. In this study, negative-sequence current injection has been fulfilled in three-phase power electronic interface for two important duties besides injecting reference power into utility grids. The first one is for islanding detection, and the other one is to enhance unbalance-fault ride-through capability of dispersed generation. This paper introduces a mechanism of negative-sequence injection based on controlling two separate coordinates of dq-control and explains the effect of negative-sequence injection in limiting the unbalanced currents generated from a dispersed generation. Using adaptive notch filter as a signal processing unit for the three-phase system, negative-sequence components are observed. The performance of entire control system is evaluated by time domain simulations, PSCAD/EMTDC (power systems computer aided design/electromagnetic transients including DC).展开更多
Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full powe...Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.展开更多
Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy captu...Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.展开更多
Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FM...Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FMSS)is capable to support the voltage during the grid faults.In this paper,a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS.The positive-negative-sequence compensation(PNSC)scheme is adopted to control the active and reactive current.This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports.Based on the characteristics of the voltage support under PNSC scheme,two voltage support strategies are proposed.A proportional-integral controller is introduced to provide the reactive power references,which eliminates the errors when estimating the grid voltage and impedance.A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references.The voltage support strategies in two different voltage sags are simulated,and results show the feasibility and effectiveness of the proposed control strategies.展开更多
As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the...As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the generator transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the generator transient stability in the power system with significant PV penetration is assessed by a numerical simulation. In order to assess the impact from various angles, simulation parameters such as levels of PV penetration, variety of power sources (inverter or rotational machine), and existence of LVRT capability are considered. The simulation is performed by using PSCAD/EMTDC software.展开更多
Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the...Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the context of a possible severe threat of large-scale disconnection caused by wind farms.Currently,research on the LVRT of wind farms mainly focuses on suppressing rotor current and providing reactive current support,while the impact of active current output on LVRT performance has not been thoroughly discussed.This paper studies and reveals the relation-ship between the limit of reactive current output and the depth of voltage drop during LVRT for doubly-fed induction generator(DFIG)based wind farms.Specifically,the reactive current output limit of the grid-side converter is inde-pendent of the depth of voltage drop,and its limit is the maximum current allowed by the converter,while the reac-tive current output limit of the DFIG stator is a linear function of the depth of voltage drop.An optimized scheme for allocating reactive current among the STATCOM,DFIG stator,and grid-side converter is proposed.The scheme maximizes the output of active current while satisfying the standard requirements for reactive current output.Com-pared to traditional schemes,the proposed LVRT optimization strategy can output more active power during the LVRT period,effectively suppressing the rate of rotor speed increase,and improving the LVRT performance and fault recov-ery capability of wind farms.Simulation results verify the effectiveness of the proposed scheme.展开更多
The impact of large-scale grid-connected PV (photovoltaics) on power system transient stability is discussed in this paper. In response to an increase of PV capacity, the capacity of conventional synchronous generat...The impact of large-scale grid-connected PV (photovoltaics) on power system transient stability is discussed in this paper. In response to an increase of PV capacity, the capacity of conventional synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence, the power system transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the potential impact of significant PV penetration on the transient stability is assessed by a numerical simulation using PSCAD/EMTDC.展开更多
The series line-commutated converter(LCC)and modular multilevel converter(MMC)hybrid high-voltage direct current(HVDC)system provides a more economical and flexible alternative for ultra-HVDC(UHVDC)transmission,which ...The series line-commutated converter(LCC)and modular multilevel converter(MMC)hybrid high-voltage direct current(HVDC)system provides a more economical and flexible alternative for ultra-HVDC(UHVDC)transmission,which is the so-called Baihetan-Jiangsu HVDC(BJ-HVDC)project of China.In one LCC and two MMCs(1+2)operation mode,the sub-module(SM)capacitors suffer the most rigorous overvoltage induced by three-phase-to-ground fault at grid-side MMC and valve-side single-phase-to-ground fault in internal MMC.In order to suppress such huge overvoltage,this paper demonstrates a novel alternative by employing the MMC-based embedded battery energy storage system(MMC-BESS).Firstly,the inducements of SM overvoltage are analyzed.Then,coordinated with MMC-BESS,new fault ride-through(FRT)strategies are proposed to suppress the overvoltage and improve the FRT capability.Finally,several simulation scenarios are carried out on PSCAD/EMTDC.The overvoltage suppression is verified against auxiliary device used in the BJ-HVDC project in a monopolar BJ-HVDC system.Further,the proposed FRT strategies are validated in the southern Jiangsu power grid of China based on the planning data in the summer of 2025.Simulation results show that the MMC-BESS and proposed FRT strategies could effectively suppress the overvoltage and improve the FRT capability.展开更多
This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching ...This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching control units(SCUs).Each SCU switches between a bang-bang funnel controller(BBFC)and proportional-integral(PI)control loop according to a state-dependent switching law.The BBFC can utilize the full control capability of each control loop using three-value control signals with the maximum available magnitude.A state-dependent switching law is designed for each SCU to guarantee its structural stability.Simulation studies are conducted to verify the superior fault ride-through capability of the MMC-HVDC transmission system controlled by FRTHC,in comparison to that controlled by a vector controller(VC)and a VC with DC voltage droop control(VDRC).展开更多
Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper pr...Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper presents the design and application of an effective scheme for DFIGs when a commutation failure(CF)occurs in a line-commutated converter based high-voltage direct current(LCC-HVDC)transmission system.First,transient demagnetization control without filters is proposed to offset the electromotive force(EMF)induced by the natural flux and other low-frequency flux components.Then,a rotor-side integrated impedance circuit is designed to limit the rotor overcurrent to ensure that the rotor-side converter(RSC)is controllable.Furthermore,coordinated control of the demagnetization and segmented reactive currents is implemented in the RSC.Comparative studies have shown that the proposed scheme can limit rotor fault currents and effectively improve the continuous fault ride-through capability of DFIGs.展开更多
The impact of large-scale grid-connected renewable power sources, such as wind generators and solar photovoitaic systems, on transient stability of synchronous generators is discussed in this paper. The permanent magn...The impact of large-scale grid-connected renewable power sources, such as wind generators and solar photovoitaic systems, on transient stability of synchronous generators is discussed in this paper. The permanent magnet synchronous generator with variable speed wind turbine is used in the simulation analysis as a wind generator model. The transient stability analysis is performed for IEEE 9-bus system model with high-penetration renewable power sources. The effect of FRT (fault ride-through) capability implemented for each power source on the transient stability is investigated.展开更多
In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. ...In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. Through the simulation analysis, we have obtained some conclusions in terms of the impact of high-penetration PV on the stability. However, for more accurate assessment of the transient stability, it is necessary to analyze various simulation models considering many other power system conditions. This paper presents the results of the analysis for the transient stability simulation performed for IEEE 9-bus system model, in which the effects of various conditions, such as variety of power sources (inverter or rotational machine), load characteristics, existence of LVRT (low-voltage ride-through) capability and fault locations, on the transient stability are investigated.展开更多
The installed capacity of renewable energy generation has continued to grow rapidly in recent years along with the global energy transition towards a 100%renewable-based power system.At the same time,the grid-connecte...The installed capacity of renewable energy generation has continued to grow rapidly in recent years along with the global energy transition towards a 100%renewable-based power system.At the same time,the grid-connected large-scale renewable energy brings significant challenges to the safe and stable operation of the power system due to the loss of synchronous machines.Therefore,self-synchronous wind turbines have attracted wide attention from both academia and industry.However,the understanding of the physical operation mechanisms of self-synchronous wind turbines is not clear.In particular,the transient characteristics and dynamic processes of wind turbines are fuzzy in the presence of grid disturbances.Furthermore,it is difficult to design an adaptive fault ride-through(FRT)control strategy.Thus,a dual-mode switching FRT control strategy for self-synchronous wind turbines is developed.Two FRT control strategies are used.In one strategy,the amplitude and phase of the internal potential are directly calculated according to the voltage drop when a minor grid fault occurs.The other dual-mode switching control strategy in the presence of a deep grid fault includes three parts:vector control during the grid fault,fault recovery vector control,and self-synchronous control.The proposed control strategy can significantly mitigate transient overvoltage,overcurrent,and multifrequency oscillation,thereby resulting in enhanced transient stability.Finally,simulation results are provided to validate the proposed control strategy.展开更多
A hybrid drive wind turbine equipped with a speed regulating differential mechanism can generate electricity at the grid frequency by an electrically excited synchronous generator without requiring fully or partially ...A hybrid drive wind turbine equipped with a speed regulating differential mechanism can generate electricity at the grid frequency by an electrically excited synchronous generator without requiring fully or partially rated converters. This mechanism has extensively been studied in recent years. To enhance the transient operation performance and low-voltage ridethrough capacity of the proposed hybrid drive wind turbine, we aim to synthesize an advanced control scheme for the flexible regulation of synchronous generator excitation based on fractional-order sliding mode theory. Moreover, an extended state observer is constructed to cooperate with the designed controller and jointly compensate for parametric uncertainties and external disturbances. A dedicated simulation model of a 1.5 MW hybrid drive wind turbine is established and verified through an experimental platform. The results show satisfactory model performance with the maximum and average speed errors of 1.67% and 1.05%, respectively. Moreover, comparative case studies are carried out considering parametric uncertainties and different wind conditions and grid faults, by which the superiority of the proposed controller for improving system ongrid operation performance is verified.展开更多
Disconnections due to voltage drops in the grid cannot be permitted if wind turbines(WTs)contribute significantly to electricity pro-duction,as this increases the risk of production loss and destabilizes the grid.To m...Disconnections due to voltage drops in the grid cannot be permitted if wind turbines(WTs)contribute significantly to electricity pro-duction,as this increases the risk of production loss and destabilizes the grid.To mitigate the negative effects of these occurrences,WTs must be able to ride through the low-voltage conditions and inject reactive current to provide dynamic voltage support.This paper investigates the low-voltage ride-through(LVRT)capability enhancement of a Type-3 WT utilizing a dynamic voltage restorer(DVR).During the grid voltage drop,the DVR quickly injects a compensating voltage to keep the stator voltage constant.This paper proposes an active disturbance rejection control(ADRC)scheme to control the rotor-side,grid-side and DVR-side converters in a wind–DVR integrated network.The performance of the Type-3 WT with DVR topology is evaluated under various test conditions using MATLAB®/Simulink®.These simulation results are also compared with the experimental results for the LVRT capability performed on a WT emulator equipped with a crowbar and direct current(DC)chopper.The simulation results demonstrate a favourable transient and steady-state response of the Type-3 wind turbine quantities defined by the LVRT codes,as well as improved reactive power support under balanced fault conditions.Under the most severe voltage drop of 95%,the stator currents,rotor currents and DC bus voltage are 1.25 pu,1.40 pu and 1.09 UDC,respectively,conforming to the values of the LVRT codes.DVR controlled by the ADRC technique significantly increases the LVRT capabilities of a Type-3 doubly-fed induction generator-based WT under symmetrical voltage dip events.Although setting up ADRC controllers might be challenging,the proposed method has been shown to be extremely effective in reducing all kinds of internal and external disturbances.展开更多
When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined...When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results.展开更多
文摘With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV system is controlled to keep grid connected, as well as inject reactive current to grid when fault occurs. The mathematical model of PV system is established and the fault characteristic is studied with respect to the control strategy. By analyzing the effect of reactive power supplied by the PV system to the point of common coupling (PCC) voltage, this paper proposes an adaptive voltage support control strategy to enhance the fault ride-through capability of PV system. The control strategy fully utilizes the PV system’s capability of voltage support and takes the safety of equipment into account as well. At last, the proposed control strategy is verified by simulation.
文摘The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM.
文摘In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.
文摘Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive power injecting into a grid but also implements other importance duties as well. In this study, negative-sequence current injection has been fulfilled in three-phase power electronic interface for two important duties besides injecting reference power into utility grids. The first one is for islanding detection, and the other one is to enhance unbalance-fault ride-through capability of dispersed generation. This paper introduces a mechanism of negative-sequence injection based on controlling two separate coordinates of dq-control and explains the effect of negative-sequence injection in limiting the unbalanced currents generated from a dispersed generation. Using adaptive notch filter as a signal processing unit for the three-phase system, negative-sequence components are observed. The performance of entire control system is evaluated by time domain simulations, PSCAD/EMTDC (power systems computer aided design/electromagnetic transients including DC).
文摘Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.
基金Project (No.50577056) supported by the National Natural Science Foundation of China
文摘Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0903100)Science and Technology Projects of State Grid Corporation of China(No.521104170043).
文摘Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FMSS)is capable to support the voltage during the grid faults.In this paper,a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS.The positive-negative-sequence compensation(PNSC)scheme is adopted to control the active and reactive current.This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports.Based on the characteristics of the voltage support under PNSC scheme,two voltage support strategies are proposed.A proportional-integral controller is introduced to provide the reactive power references,which eliminates the errors when estimating the grid voltage and impedance.A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references.The voltage support strategies in two different voltage sags are simulated,and results show the feasibility and effectiveness of the proposed control strategies.
文摘As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the generator transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the generator transient stability in the power system with significant PV penetration is assessed by a numerical simulation. In order to assess the impact from various angles, simulation parameters such as levels of PV penetration, variety of power sources (inverter or rotational machine), and existence of LVRT capability are considered. The simulation is performed by using PSCAD/EMTDC software.
基金supported by the National Natural Science Foundation of China 52177108。
文摘Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the context of a possible severe threat of large-scale disconnection caused by wind farms.Currently,research on the LVRT of wind farms mainly focuses on suppressing rotor current and providing reactive current support,while the impact of active current output on LVRT performance has not been thoroughly discussed.This paper studies and reveals the relation-ship between the limit of reactive current output and the depth of voltage drop during LVRT for doubly-fed induction generator(DFIG)based wind farms.Specifically,the reactive current output limit of the grid-side converter is inde-pendent of the depth of voltage drop,and its limit is the maximum current allowed by the converter,while the reac-tive current output limit of the DFIG stator is a linear function of the depth of voltage drop.An optimized scheme for allocating reactive current among the STATCOM,DFIG stator,and grid-side converter is proposed.The scheme maximizes the output of active current while satisfying the standard requirements for reactive current output.Com-pared to traditional schemes,the proposed LVRT optimization strategy can output more active power during the LVRT period,effectively suppressing the rate of rotor speed increase,and improving the LVRT performance and fault recov-ery capability of wind farms.Simulation results verify the effectiveness of the proposed scheme.
文摘The impact of large-scale grid-connected PV (photovoltaics) on power system transient stability is discussed in this paper. In response to an increase of PV capacity, the capacity of conventional synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence, the power system transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the potential impact of significant PV penetration on the transient stability is assessed by a numerical simulation using PSCAD/EMTDC.
文摘The series line-commutated converter(LCC)and modular multilevel converter(MMC)hybrid high-voltage direct current(HVDC)system provides a more economical and flexible alternative for ultra-HVDC(UHVDC)transmission,which is the so-called Baihetan-Jiangsu HVDC(BJ-HVDC)project of China.In one LCC and two MMCs(1+2)operation mode,the sub-module(SM)capacitors suffer the most rigorous overvoltage induced by three-phase-to-ground fault at grid-side MMC and valve-side single-phase-to-ground fault in internal MMC.In order to suppress such huge overvoltage,this paper demonstrates a novel alternative by employing the MMC-based embedded battery energy storage system(MMC-BESS).Firstly,the inducements of SM overvoltage are analyzed.Then,coordinated with MMC-BESS,new fault ride-through(FRT)strategies are proposed to suppress the overvoltage and improve the FRT capability.Finally,several simulation scenarios are carried out on PSCAD/EMTDC.The overvoltage suppression is verified against auxiliary device used in the BJ-HVDC project in a monopolar BJ-HVDC system.Further,the proposed FRT strategies are validated in the southern Jiangsu power grid of China based on the planning data in the summer of 2025.Simulation results show that the MMC-BESS and proposed FRT strategies could effectively suppress the overvoltage and improve the FRT capability.
基金supported in part by the State Key Program of National Natural Science Foundation of China (No.U1866210)Young Elite Scientists Sponsorship Program by CSEE (No.CSEE-YESS-2018007)Science and Technology Projects in Guangzhou (No.202102020221)。
文摘This paper proposes a fault ride-through hybrid controller(FRTHC)for modular multi-level converter based high-voltage direct current(MMC-HVDC)transmission systems.The FRTHC comprises four loops of cascading switching control units(SCUs).Each SCU switches between a bang-bang funnel controller(BBFC)and proportional-integral(PI)control loop according to a state-dependent switching law.The BBFC can utilize the full control capability of each control loop using three-value control signals with the maximum available magnitude.A state-dependent switching law is designed for each SCU to guarantee its structural stability.Simulation studies are conducted to verify the superior fault ride-through capability of the MMC-HVDC transmission system controlled by FRTHC,in comparison to that controlled by a vector controller(VC)and a VC with DC voltage droop control(VDRC).
基金supported by the National Natural Science Foundation of China(No.51907134)。
文摘Experimental and theoretical studies have confirmed that,relative to a one-shot voltage fault,a doubly-fed induction generator(DFIG)will suffer a greater transient impact during continuous voltage faults.This paper presents the design and application of an effective scheme for DFIGs when a commutation failure(CF)occurs in a line-commutated converter based high-voltage direct current(LCC-HVDC)transmission system.First,transient demagnetization control without filters is proposed to offset the electromotive force(EMF)induced by the natural flux and other low-frequency flux components.Then,a rotor-side integrated impedance circuit is designed to limit the rotor overcurrent to ensure that the rotor-side converter(RSC)is controllable.Furthermore,coordinated control of the demagnetization and segmented reactive currents is implemented in the RSC.Comparative studies have shown that the proposed scheme can limit rotor fault currents and effectively improve the continuous fault ride-through capability of DFIGs.
文摘The impact of large-scale grid-connected renewable power sources, such as wind generators and solar photovoitaic systems, on transient stability of synchronous generators is discussed in this paper. The permanent magnet synchronous generator with variable speed wind turbine is used in the simulation analysis as a wind generator model. The transient stability analysis is performed for IEEE 9-bus system model with high-penetration renewable power sources. The effect of FRT (fault ride-through) capability implemented for each power source on the transient stability is investigated.
文摘In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. Through the simulation analysis, we have obtained some conclusions in terms of the impact of high-penetration PV on the stability. However, for more accurate assessment of the transient stability, it is necessary to analyze various simulation models considering many other power system conditions. This paper presents the results of the analysis for the transient stability simulation performed for IEEE 9-bus system model, in which the effects of various conditions, such as variety of power sources (inverter or rotational machine), load characteristics, existence of LVRT (low-voltage ride-through) capability and fault locations, on the transient stability are investigated.
基金supported in part by the National Natural Science Foundation of China (No.52007174)。
文摘The installed capacity of renewable energy generation has continued to grow rapidly in recent years along with the global energy transition towards a 100%renewable-based power system.At the same time,the grid-connected large-scale renewable energy brings significant challenges to the safe and stable operation of the power system due to the loss of synchronous machines.Therefore,self-synchronous wind turbines have attracted wide attention from both academia and industry.However,the understanding of the physical operation mechanisms of self-synchronous wind turbines is not clear.In particular,the transient characteristics and dynamic processes of wind turbines are fuzzy in the presence of grid disturbances.Furthermore,it is difficult to design an adaptive fault ride-through(FRT)control strategy.Thus,a dual-mode switching FRT control strategy for self-synchronous wind turbines is developed.Two FRT control strategies are used.In one strategy,the amplitude and phase of the internal potential are directly calculated according to the voltage drop when a minor grid fault occurs.The other dual-mode switching control strategy in the presence of a deep grid fault includes three parts:vector control during the grid fault,fault recovery vector control,and self-synchronous control.The proposed control strategy can significantly mitigate transient overvoltage,overcurrent,and multifrequency oscillation,thereby resulting in enhanced transient stability.Finally,simulation results are provided to validate the proposed control strategy.
基金supported by the National Natural Science Foundation of China (No. 52005306)the Shandong Provincial Natural Science Foundation (No. ZR2020QE220)the Open Fund of Key Laboratory of Modern Power Simulation and Control&Renewable Energy Technology,Ministry of Education,Northeast Electric Power University (No. MPSS2022-02)。
文摘A hybrid drive wind turbine equipped with a speed regulating differential mechanism can generate electricity at the grid frequency by an electrically excited synchronous generator without requiring fully or partially rated converters. This mechanism has extensively been studied in recent years. To enhance the transient operation performance and low-voltage ridethrough capacity of the proposed hybrid drive wind turbine, we aim to synthesize an advanced control scheme for the flexible regulation of synchronous generator excitation based on fractional-order sliding mode theory. Moreover, an extended state observer is constructed to cooperate with the designed controller and jointly compensate for parametric uncertainties and external disturbances. A dedicated simulation model of a 1.5 MW hybrid drive wind turbine is established and verified through an experimental platform. The results show satisfactory model performance with the maximum and average speed errors of 1.67% and 1.05%, respectively. Moreover, comparative case studies are carried out considering parametric uncertainties and different wind conditions and grid faults, by which the superiority of the proposed controller for improving system ongrid operation performance is verified.
文摘Disconnections due to voltage drops in the grid cannot be permitted if wind turbines(WTs)contribute significantly to electricity pro-duction,as this increases the risk of production loss and destabilizes the grid.To mitigate the negative effects of these occurrences,WTs must be able to ride through the low-voltage conditions and inject reactive current to provide dynamic voltage support.This paper investigates the low-voltage ride-through(LVRT)capability enhancement of a Type-3 WT utilizing a dynamic voltage restorer(DVR).During the grid voltage drop,the DVR quickly injects a compensating voltage to keep the stator voltage constant.This paper proposes an active disturbance rejection control(ADRC)scheme to control the rotor-side,grid-side and DVR-side converters in a wind–DVR integrated network.The performance of the Type-3 WT with DVR topology is evaluated under various test conditions using MATLAB®/Simulink®.These simulation results are also compared with the experimental results for the LVRT capability performed on a WT emulator equipped with a crowbar and direct current(DC)chopper.The simulation results demonstrate a favourable transient and steady-state response of the Type-3 wind turbine quantities defined by the LVRT codes,as well as improved reactive power support under balanced fault conditions.Under the most severe voltage drop of 95%,the stator currents,rotor currents and DC bus voltage are 1.25 pu,1.40 pu and 1.09 UDC,respectively,conforming to the values of the LVRT codes.DVR controlled by the ADRC technique significantly increases the LVRT capabilities of a Type-3 doubly-fed induction generator-based WT under symmetrical voltage dip events.Although setting up ADRC controllers might be challenging,the proposed method has been shown to be extremely effective in reducing all kinds of internal and external disturbances.
基金supported in part by the National Key Research and Development Program of China(No.2020YFF0305800)State Grid Science Technology Project(No.520201210025)。
文摘When a renewable energy station(RES)connects to the rectifier station(RS)of a modular multilevel converterbased high-voltage direct current(MMC-HVDC)system,the voltage at the point of common coupling(PCC)is determined by RS control methods.For example,RS control may become saturated under fault,and causes the RS to change from an equivalent voltage source to an equivalent current source,making fault analysis more complicated.In addition,the grid code of the fault ride-through(FRT)requires the RES to output current according to its terminal voltage.This changes the fault point voltage and leads to RES voltage regulation and current redistribution,resulting in fault response interactions.To address these issues,this study describes how an MMC-integrated system has five operation modes and three common characteristics under the duration of the fault.The study also reveals several instances of RS performance degradation such as AC voltage loop saturation,and shows that RS power reversal can be significantly improved.An enhanced AC FRT control method is proposed to achieve controllable PCC voltage and continuous power transmission by actively reducing the PCC voltage amplitude.The robustness of the method is theoretically proven under parameter variation and operation mode switching.Finally,the feasibility of the proposed method is verified through MATLAB/Simulink results.