Manufacturing thin-film components is crucial for achieving high-efficiency and high-power thermal batteries(TBs).However,developing binders with low-gas production at the operating temperature range of TBs(400-550...Manufacturing thin-film components is crucial for achieving high-efficiency and high-power thermal batteries(TBs).However,developing binders with low-gas production at the operating temperature range of TBs(400-550°C)has proven to be a significant challenge.Here,we report the use of acrylic acid derivative terpolymer(LA136D)as a low-volatile binder for thin-film cathode fabrication and studied the chain scission and chemical bondbreaking mechanisms in pyrolysis.It is shown LA136D defers to randomchain scission and cross-linking chain scission mechanisms,which gifts it with a low proportion of volatile products(ψ,ψ=39.2 wt%)at even up to 550°C,well below those of the conventional PVDF(77.6 wt%)and SBR(99.2 wt%)binders.Surprisingly,LA136D contributes to constructing a thermal shock-resistant cathode due to the step-by-step bond-breaking process.This is beneficial for the overall performance of TBs.In discharging test,the thin-film cathodes exhibited a remarkable 440%reduction in polarization and 300%enhancement in the utilization efficiency of cathode materials,while with just a slight increase of 0.05 MPa in gas pressure compared with traditional“thick-film”cathode.Our work highlights the potential of LA136D as a low-volatile binder for thin-film cathodes and shows the feasibility of manufacturing high-efficiency and high-power TBs through polymer molecule engineering.展开更多
Oxidation induction time(OIT) testing by differential scanning calorimetry(DSC) was used to evaluate the oxidation resistance of lubricating greases. Under the high temperature condition, bearing noise was detected wh...Oxidation induction time(OIT) testing by differential scanning calorimetry(DSC) was used to evaluate the oxidation resistance of lubricating greases. Under the high temperature condition, bearing noise was detected when grease passed the initial stable stage of oxidation. The chemical and physical structure of grease samples before and after high temperature oxidation were also analyzed by FT-IR spectrometry and scanning electron microscopy(SEM), then the effects of oxidation at high temperature on bearing noise were investigated. It is found out that for lithium greases, oxidation of base oil and thickener is the main reason responsible for the increasing bearing noise. As regards the polyurea greases, the change of fiber microstructure at high temperature is the main reason for the increasing bearing noise.展开更多
Considering the accidents of ships for dangerous chemicals transportation in inland rivers,a numerical method for the simulation of the leakage and diffusion processes of dangerous chemicals in inland rivers is propos...Considering the accidents of ships for dangerous chemicals transportation in inland rivers,a numerical method for the simulation of the leakage and diffusion processes of dangerous chemicals in inland rivers is proposed in this paper.Geographic information,such as rivers and buildings in the model,is obtained through Google Earth and structures of rivers and buildings are described by Auto CAD.In addition,the Fluent is adopted to simulate the leakage and diffusion processes of the dangerous chemicals where the standard k-εmodel is used to calculate the turbulent flow.Considering the interaction between chemicals and water,the VOF method is used to describe the leakage,drift and diffusion process of dangerous chemicals groups on the water surface.Taking a section of the Yangtze River as an example,the leakage and diffusion processes from a ship carrying 3,000 tons of low-solubility and low-volatile dangerous chemicals are studied,and the characteristics of leakage and diffusion are analyzed in detail.During the simulation,the area of the maximum group of leaked dangerous chemicals reaches up to about 1800 m2,and the number reaches up to 45.Furthermore,the influence of density,viscosity,water velocity and leakage velocity on the leakage and diffusion processes is investigated in this paper.展开更多
In order to investigate the influening factors of organic modification procedure and find out connections between organic modification and the properties of bentonite greases, organic montmorillonite(OMMT) thickeners ...In order to investigate the influening factors of organic modification procedure and find out connections between organic modification and the properties of bentonite greases, organic montmorillonite(OMMT) thickeners with different surfactant dosages and constituents were synthesized through intercalation reaction between sodium montmorillonite(NaM MT) and quaternary ammonium surfactants in aqueous solvents. The lubricating greases were prepared with the resulting organoclays, while the penetration and oil separation of lubricating greases were evaluated, respectively. The surface modification process of montmorillonite(MMT) was analyzed and the thickening mechanism of OMMT was discussed in this study. The experimental results showed that, with an increasing amount of surfactant, the basal spacing between the clay platelets was increasing and the structure of modifier molecules layer in the interlayer was changing from lateral bilayer to paraffin-type bilayer. The optimal properties of lubricating greases were achieved, when the structure of surfactant molecules loaded in the interlayer was the paraffin-type monolayer, which meant that the dosage of modifier was equal to 120—140 mmol/(100g). Meanwhile, it was found that the thickening performance, colloid stability, anti-wear and friction-reducing performance of lubricating greases were improved, when the surfactants were mixed with octadecyl trimethyl ammonium chloride(OTAC) and hexadecyl trimethyl ammonium chloride(HTAC). And the optimum mole ratio of two surfactants is was 1:1.展开更多
The wax gel grease (S0) was prepared from a mixture of 2.3:1 base oil blend (base oil grade 260/290, transformer oil), and microcrystalline wax in the presence of 0.1% - 2% of polyoxyethylene sorption nano-palmitate a...The wax gel grease (S0) was prepared from a mixture of 2.3:1 base oil blend (base oil grade 260/290, transformer oil), and microcrystalline wax in the presence of 0.1% - 2% of polyoxyethylene sorption nano-palmitate as antioxidant and 2,2 methylene bis (4-methyle-6-tertiary butyl phenol) as anticorrosion. It was found that the prepared Wax gel grease has inconvenient physico-chemical and dielectric properties, so in order to improve its physico-chemical properties (viscosity, penetration, dropping point and water resistance) and dielectric Properties (dielectric constant, dielectric loss and volume resistivity), Butyl rubber, isoprene rubber and bitumen were added separately as thickening agents to the prepared wax gel in certain proportion at certain frequency range 1 - 1000 KHz at 35°C. The best dielectric properties were achieved by adding butyl rubber to the prepared wax gel.展开更多
Greases are composed by lubricating oil dispersed in a thickener that can be a metal soap, polymers or clays. Grease production using vegetable oils is increasing due to biodegradability requirements. Since vegetable ...Greases are composed by lubricating oil dispersed in a thickener that can be a metal soap, polymers or clays. Grease production using vegetable oils is increasing due to biodegradability requirements. Since vegetable oils present a worse oxidation and hydrolysis stability than mineral oils, it is usually difficult to produce a neutral grease using them. Four greases were produced using soybean oil as lubricating oil and lithium 12-hydroxy- stearate as thickener. The maximum temperature of reaction ranged from 230°C to 120°C in a bench process and a reduction in the final product acidity was observed (from 8.2% acid to 0.05% alkaline). Traditional tests to evaluate thickener structure resistance like 10,000-time worked penetration, roll stability and dropping point were performed and results compared. In addition, rheological tests were performed and the results were also compared. Results indicate that it is possible to produce a quite neutral grease using vegetable oils with good thickener structure properties.展开更多
The present communication addresses compatibility of two synthetic rubber types,chloroprene and nitrile-butadiene ones,with a number of base oils of petroleum origin and lubricating greases produced thereof.Four base ...The present communication addresses compatibility of two synthetic rubber types,chloroprene and nitrile-butadiene ones,with a number of base oils of petroleum origin and lubricating greases produced thereof.Four base oils,including three naphthenic products with varying degrees of refining and one paraffinic product,were compared with each other in terms of their effect on the rubbers.Degenerative changes occurring in the rubbers on contact with the oils and greases were studied using accelerated ageing tests.Alterations in rubber parameters,such as hardness,weight and glass transition temperature,caused by interaction with oil were monitored.The main physicochemical mechanisms standing behind the changes observed in the rubber properties were found to be(i) migration of plasticizer from rubber into the oil phase,(ii) absorption of oil by rubber,and(iii) oxidation of rubber.An increase in glass transition temperature(Tg) of rubber aged in a base oil or grease was considered as an indirect indication that the plasticizer had migrated out of rubber;the plasticizer accumulation in the oil phase being directly confirmed by gas chromatography.In order to suppress the plasticizer migration,oil additivation with dioctyl adipate(DOA),a common plasticizer used in rubber formulations,was attempted.However,the DOA-additivated oils,while reducing plasticizer migration,were found to cause more swelling than the original oils in the case of chloroprene rubber.As an alternative,replacement of DOA by an alkylated aryl phosphate in nitrile-butadiene rubber formulations was considered,but it did not solve the problem either.The results of this study suggest conclusively that the type of rubber,the plasticizer,and the base oil are all the crucial parameters that should be considered when matching rubber with oil in real-life applications.Interaction of rubber with base oils and with greases produced thereof is largely controlled by(i) solvency of the base oils and(ii) polarity and cross-linking density of the rubber matrix.Higher temperatures accelerate ageing in all cases.展开更多
Grease life refers to the time it takes for the grease to lose its ability to keep the lubrication due to grease degradation. As grease life is generally shorter than fatigue life of bearing, the service life of greas...Grease life refers to the time it takes for the grease to lose its ability to keep the lubrication due to grease degradation. As grease life is generally shorter than fatigue life of bearing, the service life of grease-lubricated rolling bearings is often dominated by grease life. When designing a bearing systemolecular weightith grease lubrication, it is necessary to define the operating conditions limits of the bearing, for which grease life becomes a determining factor. Prolongation of grease life becomes an especially important challenge when the bearing is to be operated trader high-speed, high-temperature, and other severe conditions. Selecting a number of commercially sold greases composed of varying base oils, the author evaluated their properties and analyzed how each property affected the grease life by performing a multiple regression analysis. The optimum grease composition to best exploit each property was also examined. The results revealed among others that one would need to first determine the base oil type and then maximize ultimate bleeding while minimizing the evaporation rate.展开更多
Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the...Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the lubricating performance of bentonite grease enhanced by the as-prepared FG.The results showed that the coefficient of friction and the wear volume of bentonite grease with 0.3 wt%FG were decreased by 20.4%and 44.9%,respectively,as compared to those of the base grease.The main reason is that FG can promote the formation of the tribo-chemical reaction film consisting of complex carbon oxide,Fe_(2)O_(3)and FeF_(3)on the friction surface,which can remarkably improve the performance of friction reduction and prevent the appearance of severe wear.展开更多
This study prepared four types of ionic liquid-modified polypyrrole(IL-modified PPy)as conductive additives and investigated their tribological performance and conductivity in polytetrafluoroethylene lubricating greas...This study prepared four types of ionic liquid-modified polypyrrole(IL-modified PPy)as conductive additives and investigated their tribological performance and conductivity in polytetrafluoroethylene lubricating grease.The results indicated that IL-modified PPy effectively enhanced the anti-wear performance and conductivity of the base grease.Among the additives,1-octyl-3-methylimidazolium tetrafluoroborate([OMIm][BF4])modified PPy showed superior performance compared to the other three additives,with the best effect observed at a mass fraction of 0.5%.X-ray photoelectron spectroscopy analysis revealed that IL-modified PPy forms a stable friction chemical film during the friction process,effectively enhancing the lubrication performance and conductivity of the base grease.This indicates broad potential applications in the field of conductive lubrication.展开更多
The tribological properties of graphene(GN) and graphite(G) as lubricant additives in lithium greases were investigated with a four-ball tribotester. The micro-morphology as well as the content and chemical state of e...The tribological properties of graphene(GN) and graphite(G) as lubricant additives in lithium greases were investigated with a four-ball tribotester. The micro-morphology as well as the content and chemical state of elements on the worn surfaces was characterized by scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). The results showed that the tribological performance of lithium grease could be significantly improved by the addition of graphene. During the friction process, an adhesion film and a deposition film consisted of graphene as well as a tribochemical reaction film composed of FeO, Fe_2O_3, FeOOH and LiOH could be formed on the tribosurface, and these complex films were responsible for the improved tribological performance of lithium grease.展开更多
The optical properties of four kinds of lubricating greases (urea, lithium, extreme pressure lithium, molybdenum disulfide lithium greases) with different NLGL (National Lubricant Grease Institute of America) numb...The optical properties of four kinds of lubricating greases (urea, lithium, extreme pressure lithium, molybdenum disulfide lithium greases) with different NLGL (National Lubricant Grease Institute of America) numbers were investigated using terahertz time-domain spectroscopy. Greases with different NLGL grades have unique spectral features in the terahertz range. Comparison of the experimental data with predictions based on Lorentz Lorenz theory exhibited that the refractive indices of each kind of lubricating grease were dependent on the their consistency. In addition, molybdenum disullfide (MoS2) aa a libricant additive shows strong absorption from 0.2 to 1.4 THz, leading to higher absorption of MoS2-1ithium grease than that of lithium grease.展开更多
Titanium complex greases were prepared by using naphthenic mineral oil and polydimethylsiloxane as the mixed base oil. The effect of polydimethylsiloxane molecular weight and polydimethylsiloxane content in mixed base...Titanium complex greases were prepared by using naphthenic mineral oil and polydimethylsiloxane as the mixed base oil. The effect of polydimethylsiloxane molecular weight and polydimethylsiloxane content in mixed base oil on the physicochemical and tribological properties of titanium complex greases was investigated.As compared to the sole mineral oil-based titanium complex grease, the use of polydimethylsiloxane(H201-350)as a co-base oil increased the dropping point from 310 to 329℃, decreased the oil separation from 3.7% to 2.3%,reduced the corrosion extent, and obviously improved the tribological properties. When the mixed oil-based titanium complex grease was used as a lubricant, lubricating films of polydimethylsiloxane were probably formed on the surfaces of friction pairs, giving good lubricating property.展开更多
In order to solve the hardening problem of complex calcium lubricating grease, the water absorption test of several calcium salts was carried out, and it was found that calcium 12-hydroxystearate did not absorb water,...In order to solve the hardening problem of complex calcium lubricating grease, the water absorption test of several calcium salts was carried out, and it was found that calcium 12-hydroxystearate did not absorb water, and calcium acetate, calcium phosphate and calcium borate had different degrees of water absorption. Calcium acetate has the highest water absorption rate, while calcium phosphate and calcium borate show comparable water absorption rates. Upon using the molecular simulation technology, it is found that in the complex calcium grease system, calcium phosphate and calcium borate tend to combine with water, which inhibits the water absorption of calcium acetate and alleviate the hardening problem.展开更多
A new category of lithium greases was synthesized by using poly-a-olefin(PAO8) and alkyl-tetralin as base oil, where the alkyl-tetralins were synthesized by the alkylation of tetralin and olefins. The influence of thi...A new category of lithium greases was synthesized by using poly-a-olefin(PAO8) and alkyl-tetralin as base oil, where the alkyl-tetralins were synthesized by the alkylation of tetralin and olefins. The influence of thickener concentration, alkyl-tetralin content and type of blend oils on the rheological and tribological performance of lithium grease was investigated. The microstructures of soap fibers were measured to reveal the structure-property correlations. The concentration of thickener and alkyl-tetralin content obviously affect the lubricating performance of lithium grease, while the molecular structure of alkyltetralin has no obvious impact on their properties. It was found that alkyl-tetralin could significantly enhance the thickening ability of PAO8 base oils, and decrease the amount of thickeners by 1.5%(mass).Lithium greases prepared using 20%(mass) alkyl-tetralin as co-base oil exhibited high colloidal stability,excellent rheological behaviors and tribological properties.展开更多
A kind of vacuum lubricating grease was prepared by using perfluoropolyether as base oil,perfluorinated polymer as thickener,and self-made additives.The colloidal stability of the grease was greatly improved by introd...A kind of vacuum lubricating grease was prepared by using perfluoropolyether as base oil,perfluorinated polymer as thickener,and self-made additives.The colloidal stability of the grease was greatly improved by introducing a colloidal structure modifier.The rheological properties of the self-made grease(SMG),such as viscosity versus time,thixotropy,etc.,were studied by a rheometer at different temperatures and were compared with those of foreign brand grease(FBG).The results show that the performance of SMG reached the level of similar FBG,and some properties such as mechanical stability,colloidal stability,extreme pressure and antiwear properties were better.It can be used for long life lubrication of moving parts in a vacuum environment.展开更多
The feasibility for preparation of ultrafine bentonite powder by different milling methods was studied. And the comparison of comprehensive performance between ultrafine bentonite grease and traditional bentonite grea...The feasibility for preparation of ultrafine bentonite powder by different milling methods was studied. And the comparison of comprehensive performance between ultrafine bentonite grease and traditional bentonite grease was also investigated. The results indicated that the statistic Z-average size of ultrafine bentonite prepared by sand milling was 250 nm with a narrow size distribution and the lattice structure of ultrafine bentonite maintained good character despite a slight distortion occasioned. The mechanical stability, colloid stability, antiwear ability and friction-reducing property of ultrafine bentonite grease were superior to the traditional one.展开更多
The surface modified TiO_2 nanoparticles were prepared by using 12-hydroxystearic acid chemically modified on the TiO_2 surface. The average size of the TiO_2 particles is about 30 nm. The optimum ratio of tetrabutyl ...The surface modified TiO_2 nanoparticles were prepared by using 12-hydroxystearic acid chemically modified on the TiO_2 surface. The average size of the TiO_2 particles is about 30 nm. The optimum ratio of tetrabutyl titanate to 12-hydroxystearic acid was 1/0.5. The bonding form between 12-hydroxystearic acid and TiO_2 nucleus was investigated by FTIR, DSC, TGA and XRD techniques. The lubricating grease containing the surface modified TiO_2 nanoparticles possesses excellent anti-wear and anti-friction properties. Compared with the grease without TiO_2, the PB value can be increased by 52% as the best performance of the grease containing surface modified TiO_2 nanoparticles, while the friction coefficient can be reduced by 33% with the addition of a small amount of TiO_2 nanoparticles, and meanwhile the wear scar diameter decreases by 25%.展开更多
Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the infuence of graphe...Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the infuence of graphene dispersion on the thickening efect and lubrication function is considered. A well-dispersed lubricant additive was obtained via trihexyl tetradecyl phosphonium bis(2-ethylhexyl) phosphate modifed graphene ([P_(66614)][DEHP]-G). Then lithium complex grease was prepared by saponifcation with 12-OH stearic acid, sebacic acid, and lithium hydroxide, using polyalphaolefn (PAO20) as base oil and the modifed-graphene as lubricating additive, with the original graphene as a comparison. The physicochemical properties and lubrication performance of the as-prepared greases were evaluated in detail. The results show that the as-prepared greases have high dropping point and colloidal stability. Furthermore, modifed-graphene lithium complex grease ofered the best friction reduction and anti-wear abilities, manifesting the reduction of friction coefcient and wear volume up to 18.84% and 67.34%, respectively. With base oil overfow and afux, well-dispersed [P_(66614)][DEHP]-G was readily adsorbed to the worn surfaces, resulting in the formation of a continuous and dense graphene deposition flm. The synergy of deposited graphene-flm, spilled oil, and adhesive grease greatly improves the lubrication function of grease. This research paves the way for modulating high-performance lithium complex grease to reduce the friction and wear of movable machinery.展开更多
Till now, most part of the biodiesel is produced from the refined vegetable oils using methanol as feedstock in the presence of an alkali catalyst. However, large amount of waste edible oils and grease are available. ...Till now, most part of the biodiesel is produced from the refined vegetable oils using methanol as feedstock in the presence of an alkali catalyst. However, large amount of waste edible oils and grease are available. The difficulty with alkali-catalyzed esterification of these oils is that they often contain large amount of free fatty acids (FFA), polymers and decomposition products. These free fatty acids can quickly react with the alkali catalyst to produce soaps that inhibit the separation of the ester and glycerine. An esterification and transesterification process is developed to convert the high FFA oil to its monoesters, The first step, the acidcatalyzed esterification with glycerine and these FFA reduces the FFA content of the oil and grease to less than 3%, and then an azeotropic distillation solvent is used to remove the water. The major factors affecting the conversion efficiency of the process such as glycerol to free fatty acid molar ratio, catalyst amount, reaction temperature and reaction duration are analyzed, The second step, alkali-catalyzed transesterificatiou process converts the products of the first step to its monoesters and glycerol, and then the glycerol is recycled for utilization in the first step. Technical indicators of the biodiesel product can meet the ASTM 6751 standard.展开更多
基金the support from the China Academy of Engineering Physicsthe National Natural Science Foundation of China(NSFC-No.52102319,12104422,U1930208)
文摘Manufacturing thin-film components is crucial for achieving high-efficiency and high-power thermal batteries(TBs).However,developing binders with low-gas production at the operating temperature range of TBs(400-550°C)has proven to be a significant challenge.Here,we report the use of acrylic acid derivative terpolymer(LA136D)as a low-volatile binder for thin-film cathode fabrication and studied the chain scission and chemical bondbreaking mechanisms in pyrolysis.It is shown LA136D defers to randomchain scission and cross-linking chain scission mechanisms,which gifts it with a low proportion of volatile products(ψ,ψ=39.2 wt%)at even up to 550°C,well below those of the conventional PVDF(77.6 wt%)and SBR(99.2 wt%)binders.Surprisingly,LA136D contributes to constructing a thermal shock-resistant cathode due to the step-by-step bond-breaking process.This is beneficial for the overall performance of TBs.In discharging test,the thin-film cathodes exhibited a remarkable 440%reduction in polarization and 300%enhancement in the utilization efficiency of cathode materials,while with just a slight increase of 0.05 MPa in gas pressure compared with traditional“thick-film”cathode.Our work highlights the potential of LA136D as a low-volatile binder for thin-film cathodes and shows the feasibility of manufacturing high-efficiency and high-power TBs through polymer molecule engineering.
文摘Oxidation induction time(OIT) testing by differential scanning calorimetry(DSC) was used to evaluate the oxidation resistance of lubricating greases. Under the high temperature condition, bearing noise was detected when grease passed the initial stable stage of oxidation. The chemical and physical structure of grease samples before and after high temperature oxidation were also analyzed by FT-IR spectrometry and scanning electron microscopy(SEM), then the effects of oxidation at high temperature on bearing noise were investigated. It is found out that for lithium greases, oxidation of base oil and thickener is the main reason responsible for the increasing bearing noise. As regards the polyurea greases, the change of fiber microstructure at high temperature is the main reason for the increasing bearing noise.
基金supported by the special fund for the basic research business of the central public welfare research institutes(TKS160222,TKS160211)the key technology projects of the transportation industry(TKS180403)+1 种基金the Tianjin Science and Technology Project(the project)(17YFZCSF01250)supported by National Natural Science Foundation of China(No.U1930402).
文摘Considering the accidents of ships for dangerous chemicals transportation in inland rivers,a numerical method for the simulation of the leakage and diffusion processes of dangerous chemicals in inland rivers is proposed in this paper.Geographic information,such as rivers and buildings in the model,is obtained through Google Earth and structures of rivers and buildings are described by Auto CAD.In addition,the Fluent is adopted to simulate the leakage and diffusion processes of the dangerous chemicals where the standard k-εmodel is used to calculate the turbulent flow.Considering the interaction between chemicals and water,the VOF method is used to describe the leakage,drift and diffusion process of dangerous chemicals groups on the water surface.Taking a section of the Yangtze River as an example,the leakage and diffusion processes from a ship carrying 3,000 tons of low-solubility and low-volatile dangerous chemicals are studied,and the characteristics of leakage and diffusion are analyzed in detail.During the simulation,the area of the maximum group of leaked dangerous chemicals reaches up to about 1800 m2,and the number reaches up to 45.Furthermore,the influence of density,viscosity,water velocity and leakage velocity on the leakage and diffusion processes is investigated in this paper.
基金financially supported by the Chongqing Construction Project of Innovation Teams in Colleges and Universities-Petroleum Products Application Engineering and Technology(Project No.KJTD201342)the Chongqing Project of Innovation Research by Postgraduates(Project No.CYB16130)
文摘In order to investigate the influening factors of organic modification procedure and find out connections between organic modification and the properties of bentonite greases, organic montmorillonite(OMMT) thickeners with different surfactant dosages and constituents were synthesized through intercalation reaction between sodium montmorillonite(NaM MT) and quaternary ammonium surfactants in aqueous solvents. The lubricating greases were prepared with the resulting organoclays, while the penetration and oil separation of lubricating greases were evaluated, respectively. The surface modification process of montmorillonite(MMT) was analyzed and the thickening mechanism of OMMT was discussed in this study. The experimental results showed that, with an increasing amount of surfactant, the basal spacing between the clay platelets was increasing and the structure of modifier molecules layer in the interlayer was changing from lateral bilayer to paraffin-type bilayer. The optimal properties of lubricating greases were achieved, when the structure of surfactant molecules loaded in the interlayer was the paraffin-type monolayer, which meant that the dosage of modifier was equal to 120—140 mmol/(100g). Meanwhile, it was found that the thickening performance, colloid stability, anti-wear and friction-reducing performance of lubricating greases were improved, when the surfactants were mixed with octadecyl trimethyl ammonium chloride(OTAC) and hexadecyl trimethyl ammonium chloride(HTAC). And the optimum mole ratio of two surfactants is was 1:1.
文摘The wax gel grease (S0) was prepared from a mixture of 2.3:1 base oil blend (base oil grade 260/290, transformer oil), and microcrystalline wax in the presence of 0.1% - 2% of polyoxyethylene sorption nano-palmitate as antioxidant and 2,2 methylene bis (4-methyle-6-tertiary butyl phenol) as anticorrosion. It was found that the prepared Wax gel grease has inconvenient physico-chemical and dielectric properties, so in order to improve its physico-chemical properties (viscosity, penetration, dropping point and water resistance) and dielectric Properties (dielectric constant, dielectric loss and volume resistivity), Butyl rubber, isoprene rubber and bitumen were added separately as thickening agents to the prepared wax gel in certain proportion at certain frequency range 1 - 1000 KHz at 35°C. The best dielectric properties were achieved by adding butyl rubber to the prepared wax gel.
文摘Greases are composed by lubricating oil dispersed in a thickener that can be a metal soap, polymers or clays. Grease production using vegetable oils is increasing due to biodegradability requirements. Since vegetable oils present a worse oxidation and hydrolysis stability than mineral oils, it is usually difficult to produce a neutral grease using them. Four greases were produced using soybean oil as lubricating oil and lithium 12-hydroxy- stearate as thickener. The maximum temperature of reaction ranged from 230°C to 120°C in a bench process and a reduction in the final product acidity was observed (from 8.2% acid to 0.05% alkaline). Traditional tests to evaluate thickener structure resistance like 10,000-time worked penetration, roll stability and dropping point were performed and results compared. In addition, rheological tests were performed and the results were also compared. Results indicate that it is possible to produce a quite neutral grease using vegetable oils with good thickener structure properties.
文摘The present communication addresses compatibility of two synthetic rubber types,chloroprene and nitrile-butadiene ones,with a number of base oils of petroleum origin and lubricating greases produced thereof.Four base oils,including three naphthenic products with varying degrees of refining and one paraffinic product,were compared with each other in terms of their effect on the rubbers.Degenerative changes occurring in the rubbers on contact with the oils and greases were studied using accelerated ageing tests.Alterations in rubber parameters,such as hardness,weight and glass transition temperature,caused by interaction with oil were monitored.The main physicochemical mechanisms standing behind the changes observed in the rubber properties were found to be(i) migration of plasticizer from rubber into the oil phase,(ii) absorption of oil by rubber,and(iii) oxidation of rubber.An increase in glass transition temperature(Tg) of rubber aged in a base oil or grease was considered as an indirect indication that the plasticizer had migrated out of rubber;the plasticizer accumulation in the oil phase being directly confirmed by gas chromatography.In order to suppress the plasticizer migration,oil additivation with dioctyl adipate(DOA),a common plasticizer used in rubber formulations,was attempted.However,the DOA-additivated oils,while reducing plasticizer migration,were found to cause more swelling than the original oils in the case of chloroprene rubber.As an alternative,replacement of DOA by an alkylated aryl phosphate in nitrile-butadiene rubber formulations was considered,but it did not solve the problem either.The results of this study suggest conclusively that the type of rubber,the plasticizer,and the base oil are all the crucial parameters that should be considered when matching rubber with oil in real-life applications.Interaction of rubber with base oils and with greases produced thereof is largely controlled by(i) solvency of the base oils and(ii) polarity and cross-linking density of the rubber matrix.Higher temperatures accelerate ageing in all cases.
文摘Grease life refers to the time it takes for the grease to lose its ability to keep the lubrication due to grease degradation. As grease life is generally shorter than fatigue life of bearing, the service life of grease-lubricated rolling bearings is often dominated by grease life. When designing a bearing systemolecular weightith grease lubrication, it is necessary to define the operating conditions limits of the bearing, for which grease life becomes a determining factor. Prolongation of grease life becomes an especially important challenge when the bearing is to be operated trader high-speed, high-temperature, and other severe conditions. Selecting a number of commercially sold greases composed of varying base oils, the author evaluated their properties and analyzed how each property affected the grease life by performing a multiple regression analysis. The optimum grease composition to best exploit each property was also examined. The results revealed among others that one would need to first determine the base oil type and then maximize ultimate bleeding while minimizing the evaporation rate.
基金Funded by Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-K202212905)Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-msxmX0453)。
文摘Fluorographene(FG)with narrow lateral size and thickness distributions was prepared by a liquid-phase exfoliation method,based on liquid cascade centrifugation.The Rtec MFT-5000 tribo-meter was used to investigate the lubricating performance of bentonite grease enhanced by the as-prepared FG.The results showed that the coefficient of friction and the wear volume of bentonite grease with 0.3 wt%FG were decreased by 20.4%and 44.9%,respectively,as compared to those of the base grease.The main reason is that FG can promote the formation of the tribo-chemical reaction film consisting of complex carbon oxide,Fe_(2)O_(3)and FeF_(3)on the friction surface,which can remarkably improve the performance of friction reduction and prevent the appearance of severe wear.
基金The authors would like to appreciate the financial support extended for this academic work by the Beijing Natural Science Foundation(Grants 2172053,2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘This study prepared four types of ionic liquid-modified polypyrrole(IL-modified PPy)as conductive additives and investigated their tribological performance and conductivity in polytetrafluoroethylene lubricating grease.The results indicated that IL-modified PPy effectively enhanced the anti-wear performance and conductivity of the base grease.Among the additives,1-octyl-3-methylimidazolium tetrafluoroborate([OMIm][BF4])modified PPy showed superior performance compared to the other three additives,with the best effect observed at a mass fraction of 0.5%.X-ray photoelectron spectroscopy analysis revealed that IL-modified PPy forms a stable friction chemical film during the friction process,effectively enhancing the lubrication performance and conductivity of the base grease.This indicates broad potential applications in the field of conductive lubrication.
基金financially supported by the program of the General Logistics Department (AX214C002)the Chongqing Postgraduate Research and Innovation Project (CYB16130)the Young Scientist Fund of Logistical Engineering University (YQ16-420801)
文摘The tribological properties of graphene(GN) and graphite(G) as lubricant additives in lithium greases were investigated with a four-ball tribotester. The micro-morphology as well as the content and chemical state of elements on the worn surfaces was characterized by scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). The results showed that the tribological performance of lithium grease could be significantly improved by the addition of graphene. During the friction process, an adhesion film and a deposition film consisted of graphene as well as a tribochemical reaction film composed of FeO, Fe_2O_3, FeOOH and LiOH could be formed on the tribosurface, and these complex films were responsible for the improved tribological performance of lithium grease.
基金Project supported by the New Century Excellent Talents in University(Grant No.NCET-08-0841)the National Natural Science Foundation of China(Grant Nos.60778034,60877038,and10804077)+2 种基金the Beijng Natural Science Foundation(Grant No.4082026)the Research Fund for the Doctoral Program of Higher Education(Grant No.200804250006)the State KeyLaboratory of Heavy Oil Processing,China University of Petroleum(Grant No.2008-14)
文摘The optical properties of four kinds of lubricating greases (urea, lithium, extreme pressure lithium, molybdenum disulfide lithium greases) with different NLGL (National Lubricant Grease Institute of America) numbers were investigated using terahertz time-domain spectroscopy. Greases with different NLGL grades have unique spectral features in the terahertz range. Comparison of the experimental data with predictions based on Lorentz Lorenz theory exhibited that the refractive indices of each kind of lubricating grease were dependent on the their consistency. In addition, molybdenum disullfide (MoS2) aa a libricant additive shows strong absorption from 0.2 to 1.4 THz, leading to higher absorption of MoS2-1ithium grease than that of lithium grease.
基金Supported by the National Natural Science Foundation of China(21506078,21506082)China Postdoctoral Science Foundation(2016M591786,2016M601739)
文摘Titanium complex greases were prepared by using naphthenic mineral oil and polydimethylsiloxane as the mixed base oil. The effect of polydimethylsiloxane molecular weight and polydimethylsiloxane content in mixed base oil on the physicochemical and tribological properties of titanium complex greases was investigated.As compared to the sole mineral oil-based titanium complex grease, the use of polydimethylsiloxane(H201-350)as a co-base oil increased the dropping point from 310 to 329℃, decreased the oil separation from 3.7% to 2.3%,reduced the corrosion extent, and obviously improved the tribological properties. When the mixed oil-based titanium complex grease was used as a lubricant, lubricating films of polydimethylsiloxane were probably formed on the surfaces of friction pairs, giving good lubricating property.
文摘In order to solve the hardening problem of complex calcium lubricating grease, the water absorption test of several calcium salts was carried out, and it was found that calcium 12-hydroxystearate did not absorb water, and calcium acetate, calcium phosphate and calcium borate had different degrees of water absorption. Calcium acetate has the highest water absorption rate, while calcium phosphate and calcium borate show comparable water absorption rates. Upon using the molecular simulation technology, it is found that in the complex calcium grease system, calcium phosphate and calcium borate tend to combine with water, which inhibits the water absorption of calcium acetate and alleviate the hardening problem.
基金financially supported by the National Natural Science Foundation of China (U1910202, 21978194)the Key Research and Development Program of Shanxi Province (202102090301005)+1 种基金the Fund for Shanxi “1331 Project”the Shanxi Natural Science Foundation for Young Scientists (202103021223064)。
文摘A new category of lithium greases was synthesized by using poly-a-olefin(PAO8) and alkyl-tetralin as base oil, where the alkyl-tetralins were synthesized by the alkylation of tetralin and olefins. The influence of thickener concentration, alkyl-tetralin content and type of blend oils on the rheological and tribological performance of lithium grease was investigated. The microstructures of soap fibers were measured to reveal the structure-property correlations. The concentration of thickener and alkyl-tetralin content obviously affect the lubricating performance of lithium grease, while the molecular structure of alkyltetralin has no obvious impact on their properties. It was found that alkyl-tetralin could significantly enhance the thickening ability of PAO8 base oils, and decrease the amount of thickeners by 1.5%(mass).Lithium greases prepared using 20%(mass) alkyl-tetralin as co-base oil exhibited high colloidal stability,excellent rheological behaviors and tribological properties.
文摘A kind of vacuum lubricating grease was prepared by using perfluoropolyether as base oil,perfluorinated polymer as thickener,and self-made additives.The colloidal stability of the grease was greatly improved by introducing a colloidal structure modifier.The rheological properties of the self-made grease(SMG),such as viscosity versus time,thixotropy,etc.,were studied by a rheometer at different temperatures and were compared with those of foreign brand grease(FBG).The results show that the performance of SMG reached the level of similar FBG,and some properties such as mechanical stability,colloidal stability,extreme pressure and antiwear properties were better.It can be used for long life lubrication of moving parts in a vacuum environment.
基金financially supported by the program of the General Logistics Department(AX214C002)
文摘The feasibility for preparation of ultrafine bentonite powder by different milling methods was studied. And the comparison of comprehensive performance between ultrafine bentonite grease and traditional bentonite grease was also investigated. The results indicated that the statistic Z-average size of ultrafine bentonite prepared by sand milling was 250 nm with a narrow size distribution and the lattice structure of ultrafine bentonite maintained good character despite a slight distortion occasioned. The mechanical stability, colloid stability, antiwear ability and friction-reducing property of ultrafine bentonite grease were superior to the traditional one.
文摘The surface modified TiO_2 nanoparticles were prepared by using 12-hydroxystearic acid chemically modified on the TiO_2 surface. The average size of the TiO_2 particles is about 30 nm. The optimum ratio of tetrabutyl titanate to 12-hydroxystearic acid was 1/0.5. The bonding form between 12-hydroxystearic acid and TiO_2 nucleus was investigated by FTIR, DSC, TGA and XRD techniques. The lubricating grease containing the surface modified TiO_2 nanoparticles possesses excellent anti-wear and anti-friction properties. Compared with the grease without TiO_2, the PB value can be increased by 52% as the best performance of the grease containing surface modified TiO_2 nanoparticles, while the friction coefficient can be reduced by 33% with the addition of a small amount of TiO_2 nanoparticles, and meanwhile the wear scar diameter decreases by 25%.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075458 and U2141211).
文摘Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the infuence of graphene dispersion on the thickening efect and lubrication function is considered. A well-dispersed lubricant additive was obtained via trihexyl tetradecyl phosphonium bis(2-ethylhexyl) phosphate modifed graphene ([P_(66614)][DEHP]-G). Then lithium complex grease was prepared by saponifcation with 12-OH stearic acid, sebacic acid, and lithium hydroxide, using polyalphaolefn (PAO20) as base oil and the modifed-graphene as lubricating additive, with the original graphene as a comparison. The physicochemical properties and lubrication performance of the as-prepared greases were evaluated in detail. The results show that the as-prepared greases have high dropping point and colloidal stability. Furthermore, modifed-graphene lithium complex grease ofered the best friction reduction and anti-wear abilities, manifesting the reduction of friction coefcient and wear volume up to 18.84% and 67.34%, respectively. With base oil overfow and afux, well-dispersed [P_(66614)][DEHP]-G was readily adsorbed to the worn surfaces, resulting in the formation of a continuous and dense graphene deposition flm. The synergy of deposited graphene-flm, spilled oil, and adhesive grease greatly improves the lubrication function of grease. This research paves the way for modulating high-performance lithium complex grease to reduce the friction and wear of movable machinery.
文摘Till now, most part of the biodiesel is produced from the refined vegetable oils using methanol as feedstock in the presence of an alkali catalyst. However, large amount of waste edible oils and grease are available. The difficulty with alkali-catalyzed esterification of these oils is that they often contain large amount of free fatty acids (FFA), polymers and decomposition products. These free fatty acids can quickly react with the alkali catalyst to produce soaps that inhibit the separation of the ester and glycerine. An esterification and transesterification process is developed to convert the high FFA oil to its monoesters, The first step, the acidcatalyzed esterification with glycerine and these FFA reduces the FFA content of the oil and grease to less than 3%, and then an azeotropic distillation solvent is used to remove the water. The major factors affecting the conversion efficiency of the process such as glycerol to free fatty acid molar ratio, catalyst amount, reaction temperature and reaction duration are analyzed, The second step, alkali-catalyzed transesterificatiou process converts the products of the first step to its monoesters and glycerol, and then the glycerol is recycled for utilization in the first step. Technical indicators of the biodiesel product can meet the ASTM 6751 standard.