期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Fractional-order Sliding Mode Control of Hybrid Drive Wind Turbine for Improving Low-voltage Ride-through Capacity
1
作者 Ziwei Wang Wenliang Yin +3 位作者 Lin Liu Yue Wang Cunshan Zhang Xiaoming Rui 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第5期1427-1436,共10页
A hybrid drive wind turbine equipped with a speed regulating differential mechanism can generate electricity at the grid frequency by an electrically excited synchronous generator without requiring fully or partially ... A hybrid drive wind turbine equipped with a speed regulating differential mechanism can generate electricity at the grid frequency by an electrically excited synchronous generator without requiring fully or partially rated converters. This mechanism has extensively been studied in recent years. To enhance the transient operation performance and low-voltage ridethrough capacity of the proposed hybrid drive wind turbine, we aim to synthesize an advanced control scheme for the flexible regulation of synchronous generator excitation based on fractional-order sliding mode theory. Moreover, an extended state observer is constructed to cooperate with the designed controller and jointly compensate for parametric uncertainties and external disturbances. A dedicated simulation model of a 1.5 MW hybrid drive wind turbine is established and verified through an experimental platform. The results show satisfactory model performance with the maximum and average speed errors of 1.67% and 1.05%, respectively. Moreover, comparative case studies are carried out considering parametric uncertainties and different wind conditions and grid faults, by which the superiority of the proposed controller for improving system ongrid operation performance is verified. 展开更多
关键词 Sliding mode controller(SMC) extended state observer(ESO) low-voltage ride-through(lvrt) synchronous generator(SG) speed regulation wind power wind turbine
原文传递
Low-voltage ride-through capability improvement of Type-3 wind turbine through active disturbance rejection feedback control-based dynamic voltage restorer
2
作者 El Mahfoud Boulaoutaq Asma Aziz +3 位作者 Abdelmounime El Magri Ahmed Abbou Mohamed Ajaamoum Azeddine Rachdy 《Clean Energy》 EI CSCD 2023年第5期1091-1109,共19页
Disconnections due to voltage drops in the grid cannot be permitted if wind turbines(WTs)contribute significantly to electricity pro-duction,as this increases the risk of production loss and destabilizes the grid.To m... Disconnections due to voltage drops in the grid cannot be permitted if wind turbines(WTs)contribute significantly to electricity pro-duction,as this increases the risk of production loss and destabilizes the grid.To mitigate the negative effects of these occurrences,WTs must be able to ride through the low-voltage conditions and inject reactive current to provide dynamic voltage support.This paper investigates the low-voltage ride-through(LVRT)capability enhancement of a Type-3 WT utilizing a dynamic voltage restorer(DVR).During the grid voltage drop,the DVR quickly injects a compensating voltage to keep the stator voltage constant.This paper proposes an active disturbance rejection control(ADRC)scheme to control the rotor-side,grid-side and DVR-side converters in a wind–DVR integrated network.The performance of the Type-3 WT with DVR topology is evaluated under various test conditions using MATLAB®/Simulink®.These simulation results are also compared with the experimental results for the LVRT capability performed on a WT emulator equipped with a crowbar and direct current(DC)chopper.The simulation results demonstrate a favourable transient and steady-state response of the Type-3 wind turbine quantities defined by the LVRT codes,as well as improved reactive power support under balanced fault conditions.Under the most severe voltage drop of 95%,the stator currents,rotor currents and DC bus voltage are 1.25 pu,1.40 pu and 1.09 UDC,respectively,conforming to the values of the LVRT codes.DVR controlled by the ADRC technique significantly increases the LVRT capabilities of a Type-3 doubly-fed induction generator-based WT under symmetrical voltage dip events.Although setting up ADRC controllers might be challenging,the proposed method has been shown to be extremely effective in reducing all kinds of internal and external disturbances. 展开更多
关键词 active disturbance rejection controller(ADRC) dynamic voltage restorer(DVR) low-voltage ride-through(lvrt) Type-3 wind turbines(WTs) doubly-fed induction generator(DFIG)
原文传递
基于撬棒并联动态电阻的自适应双馈风力发电机低电压穿越 被引量:38
3
作者 张曼 姜惠兰 《电工技术学报》 EI CSCD 北大核心 2014年第2期271-278,共8页
当电网故障引起电压跌落时,为防止大装机容量风电场的风机脱网,双馈风力发电机(DFIG)多采用Crowbar电路来实现低电压穿越(LVRT)。传统Crowbar电路采用固定阻值的电阻,很难兼顾对转子电流和直流母线电压的抑制以及对Crowbar的投入工作时... 当电网故障引起电压跌落时,为防止大装机容量风电场的风机脱网,双馈风力发电机(DFIG)多采用Crowbar电路来实现低电压穿越(LVRT)。传统Crowbar电路采用固定阻值的电阻,很难兼顾对转子电流和直流母线电压的抑制以及对Crowbar的投入工作时间的控制。针对传统Crowbar的不足提出了一种基于Crowbar并联动态电阻的双馈风力发电机低电压穿越方案,制定了该方案的自适应控制策略以及其阻值的整定方法。仿真分析不同跌落深度下所提方案的LVRT特性,并与改变IGBT的导通脉宽的变电阻Crowbar方案进行了比较,结果表明带并联动态电阻Crowbar方案的LVRT效果较好,不仅兼顾了对转子过电流和直流母线过电压的抑制,而且在电压深度跌落时可缩短Crowbar的投入时间,有利于系统电压的恢复。 展开更多
关键词 撬棒 并联动态电阻(PDR) 自适应控制 低电压穿越 双馈风力发电机(DFIG) parallel dynamic resistor(PDR) low voltage ride-through (lvrt) DOUBLY-FED induction generator(DFIG)
下载PDF
A voltage support control strategy based on three-port flexible multi-state switch in distribution networks 被引量:1
4
作者 彭勃 张国荣 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第8期192-202,共11页
Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FM... Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FMSS)is capable to support the voltage during the grid faults.In this paper,a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS.The positive-negative-sequence compensation(PNSC)scheme is adopted to control the active and reactive current.This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports.Based on the characteristics of the voltage support under PNSC scheme,two voltage support strategies are proposed.A proportional-integral controller is introduced to provide the reactive power references,which eliminates the errors when estimating the grid voltage and impedance.A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references.The voltage support strategies in two different voltage sags are simulated,and results show the feasibility and effectiveness of the proposed control strategies. 展开更多
关键词 FLEXIBLE MULTI-STATE SWITCH voltage support low-voltage ride-through reactive power control
下载PDF
A Grid-tied PV Inverter with Sag-severity-independent Low-voltage Ride Through, Reactive Power Support, and Islanding Protection 被引量:1
5
作者 Muhammad Talha Siti Rohani S.Raihan Nasrudin Abd.Rahim 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1300-1311,共12页
This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent o... This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent of sag severity while maintaining the maximum power-point tracking(MPPT)under normal and faulty conditions. The addition of an energy storage buffer stage mitigates the DC-link voltage surge during sags. At the same time, the inverter injects the reactive power during back-to-back sags of variable depths. The control system of the inverter generates the appropriate reference signals for normal, LVRT, and anti-islanding modes while the MPPT continues running. The salient features of the proposed inverter are:(1) active power injection under normal grid conditions;(2)sag-depth independent LVRT with reactive power support;(3)no DC-link fluctuations;(4) continuous MPPT mode;and(5) simultaneous LVRT and anti-islanding support during a grid outage. The inverter demonstrates an uninterrupted operation and seamless transition between various operating modes. Simulations and the experimental prototype have been implemented to validate the efficacy of the proposed PV inverter. 展开更多
关键词 low-voltage ride through(lvrt) Sag maximum power point tracking(MPPT) single-phase photovoltaic(PV)inverter PV-battery system
原文传递
Analysis of low voltage ride-through capability and optimal control strategy of doubly-fed wind farms under symmetrical fault 被引量:3
6
作者 Botong Li Dingchuan Zheng +3 位作者 Bin Li Xinru Jiao Qiteng Hong Liang Ji 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第2期321-335,共15页
Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the... Given the“carbon neutralization and carbon peak”policy,enhancing the low voltage ride-through(LVRT)capability of wind farms has become a current demand to ensure the safe and stable operation of power systems in the context of a possible severe threat of large-scale disconnection caused by wind farms.Currently,research on the LVRT of wind farms mainly focuses on suppressing rotor current and providing reactive current support,while the impact of active current output on LVRT performance has not been thoroughly discussed.This paper studies and reveals the relation-ship between the limit of reactive current output and the depth of voltage drop during LVRT for doubly-fed induction generator(DFIG)based wind farms.Specifically,the reactive current output limit of the grid-side converter is inde-pendent of the depth of voltage drop,and its limit is the maximum current allowed by the converter,while the reac-tive current output limit of the DFIG stator is a linear function of the depth of voltage drop.An optimized scheme for allocating reactive current among the STATCOM,DFIG stator,and grid-side converter is proposed.The scheme maximizes the output of active current while satisfying the standard requirements for reactive current output.Com-pared to traditional schemes,the proposed LVRT optimization strategy can output more active power during the LVRT period,effectively suppressing the rate of rotor speed increase,and improving the LVRT performance and fault recov-ery capability of wind farms.Simulation results verify the effectiveness of the proposed scheme. 展开更多
关键词 Doubly-fed induction generator(DFIG) Low voltage ride-through(lvrt) Transient characteristics Reactive current output capacity Maximum active power
原文传递
A Novel PLL Structure for Dynamic Stability Improvement of DFIG-based Wind Energy Generation Systems During Asymmetric LVRT
7
作者 Lei Guan Jun Yao 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第4期1149-1164,共16页
The dynamic coupling effect,which is introduced by the dual-sequence phase-locked loops(PLLs)used in doublyfed induction generator(DFIG)based wind energy generation systems(WEGSs)during asymmetric low voltage ride-thr... The dynamic coupling effect,which is introduced by the dual-sequence phase-locked loops(PLLs)used in doublyfed induction generator(DFIG)based wind energy generation systems(WEGSs)during asymmetric low voltage ride-through(LVRT)in weak grid,needs attention.In order to study this new dynamic coupling effect,an equivalent two-degree-of-freedom(2-DOF)spring damper particle model is used in this paper to develop a small-signal model for the dual-sequence PLLs.The dynamic interaction between the positive-sequence(PS)and negative-sequence(NS)PLLs is unveiled.Moreover,the impact of the dynamic coupling between the dual-sequence PLLs on the dynamic stability during the steady-state stage of an asymmetric fault is analyzed.The analysis results show that the dynamic coupling between the dual-sequence PLLs will cause drift in the frequency and damping for the PS and NS PLL modes.This will change the instability modal of the system and introduce the risk of dynamic instability.Hence,the effectiveness of existing control strategies for enhancing the dynamic stability will be decreased.Finally,a novel PLL structure is designed to improve the dynamic stability of the system during the steady-state stage of an asymmetric fault.The effectiveness of the proposed strategy is verified by simulations and experiments. 展开更多
关键词 Doubly-fed induction generator(DFIG) phaselocked loop(PLL) dynamic stability dynamic coupling weak grid asymmetric low-voltage ride through(lvrt)
原文传递
A Review of State-of-the-art Flexible Power Point Tracking Algorithms in Photovoltaic Systems for Grid Support:Classification and Application
8
作者 Mina Haghighat Mehdi Niroomand +2 位作者 Hossein Dehghani Tafti Christopher D.Townsend Tyrone Fernando 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期1-21,共21页
To maximize conversion efficiency,photovoltaic(PV)systems generally operate in the maximum power point tracking(MPPT)mode.However,due to the increasing penetra tion level of PV systems,there is a need for more develop... To maximize conversion efficiency,photovoltaic(PV)systems generally operate in the maximum power point tracking(MPPT)mode.However,due to the increasing penetra tion level of PV systems,there is a need for more developed control functions in terms of frequency support services and voltage control to maintain the reliability and stability of the power grid.Therefore,flexible active power control is a manda tory task for grid-connected PV systems to meet part of the grid requirements.Hence,a significant number of flexible pow er point tracking(FPPT)algorithms have been introduced in the existing literature.The purpose of such algorithms is to real ize a cost-effective method to provide grid support functional ities while minimizing the reliance on energy storage systems.This paper provides a comprehensive overview of grid support functionalities that can be obtained with the FPPT control of PV systems such as frequency support and volt-var control.Each of these grid support functionalities necessitates PV sys tems to operate under one of the three control strategies,which can be provided with FPPT algorithms.The three control strate gies are classified as:①constant power generation control(CP GC),②power reserve control(PRC),and③power ramp rate control(PRRC).A detailed discussion on available FPPT algo rithms for each control strategy is also provided.This paper can serve as a comprehensive review of the state-of-the-art FPPT algorithms that can equip PV systems with various grid support functionalities. 展开更多
关键词 Maximum power point tracking(MPPT) flexi ble power point tracking(FPPT) power reserve control(PRC) power ramp rate control(PRRC) low voltage ride-through(lvrt) constant power generation(CPG)
原文传递
Inter-cluster Voltage Balancing Control of Modular Multilevel Cascaded Converter Under Unbalanced Grid Voltage 被引量:1
9
作者 Oghenewvogaga Oghorada Li Zhang +2 位作者 Ayodele Esan Dickson Egbune Julius Uwagboe 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期515-523,共9页
This paper presents a novel inter-cluster direct current(DC)capacitor voltage balancing control scheme for the single-star configured modular multilevel cascaded converter(MMCC)-based static synchronous compensator(ST... This paper presents a novel inter-cluster direct current(DC)capacitor voltage balancing control scheme for the single-star configured modular multilevel cascaded converter(MMCC)-based static synchronous compensator(STATCOM)under unbalanced grid voltage.The negative-sequence component of grid voltage at the point of common connection(PCC)causes unbalanced active power flow in the phase limbs of converter.This leads to the imbalance of DC voltages of the sub-module capacitors across the MMCC phases,and consequently,the malfunction of converter.The proposed solution is to inject both negative-sequence current(NSC)and zero-sequence voltage(ZSV)into the phase limbs of MMCC.A quantification factor Qf is used to achieve the sharing of inter-cluster active pow-er between the NSC and ZSV injection methods.Accurate determination of the quantification factor has been presented.In addition to maintaining the DC voltages of sub-module capacitor across the MMCC phases balanced,it also prevents the overcurrent and overvoltage of converter by injecting NSC and ZSV with the right proportion.The control scheme is validated on a 3.54 kV 1.2 MVA power system using MMCC-based STATCOM with 3-level bridge cells as sub-modules.The results show that the proposed scheme provides superior effectiveness in eliminating the voltage imbalance of DC capacitor in the phase limb while maintaining low voltage and current ratings. 展开更多
关键词 low-voltage ride through(lvrt) single-star bridge converter(SSBC) static synchronous compensator(STATCOM) modular multilevel cascaded converter(MMCC) quantification factor
原文传递
Susceptibility of Large Wind Power Plants to Voltage Disturbances-Recommendations to Stakeholders
10
作者 Roger Alves de Oliveira Math H.J.Bollen 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期416-429,共14页
Sufficient fault ride-through(FRT)of large wind power plants(WPPs)is essential for the operation security of transmission system.The majority of studies on FRT do not include all disturbances originating in the transm... Sufficient fault ride-through(FRT)of large wind power plants(WPPs)is essential for the operation security of transmission system.The majority of studies on FRT do not include all disturbances originating in the transmission system or the disturbances irrelevant to the operation security.Based on the knowledge of power quality,this paper provides a guide to stakeholders in different aspects of FRT for wind turbines(WTs)and WPPs.This paper details the characteristics of the most common disturbances originated in the transmission system,how they propagate to the WT terminals,and how they impact the dynamic behavior of a large WPP.This paper shows that the details of the voltage disturbances,not only in the transmission system,but also at the WT terminals,should be taken into consideration.Moreover,a detailed representation or characterization of voltage dips is important for FRT studies,despite that the simplified models used in the literature are insufficient.This paper strongly recommends that distinct events and additional characteristics such as the phase-angle jump and oscillations in the transition segments should be considered in FRT analysis. 展开更多
关键词 Wind power generation wind farm power quality fault ride-through(FRT) low voltage ride-through(lvrt)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部