Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgm...Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgment theorem and discernable matrix are obtained, in which case an approach to attribute reduction in ordered information system with fuzzy decision is constructed. As an application of lower approximation reduction, some examples are applied to examine the validity of works obtained in our works..展开更多
In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix o...In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix operator of conjugate series of its Fourier series.展开更多
It is well known that most of information systems are based on tolerance relation instead of the classical equivalence relation because of various factors in real-world. To acquire brief decision rules from the inform...It is well known that most of information systems are based on tolerance relation instead of the classical equivalence relation because of various factors in real-world. To acquire brief decision rules from the information systems, lower approximation reduction is needed. In this paper, the lower approximation reduction is proposed in inconsistent information systems based on tolerance relation. Moreover, the properties are discussed. Furthermore, judgment theorem and discernibility matrix are obtained, from which an approach to lower reductions can be provided in the complicated information systems.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
In this paper lower semicontinuity of the functional I(u)=∫_Ωf(x,u,Δ~ _Hu)dx is investigated for f being a Carathéodory function defined on Hn×R×R^2n and for u∈SBV_H(Ω),where Hn is the Heisenberg g...In this paper lower semicontinuity of the functional I(u)=∫_Ωf(x,u,Δ~ _Hu)dx is investigated for f being a Carathéodory function defined on Hn×R×R^2n and for u∈SBV_H(Ω),where Hn is the Heisenberg group with dimension 2n+1,ΩHn is an open set and Δ~ _Hu denotes the approximate derivative of the absolute continuous part Da_Hu with respect to D_Hu.In addition,a Lusin type approximation theorem for a SBV_H function is proved.展开更多
The purpose of this paper is to make a further study on the abstract economy. Here, for the constraint correspondences we assume that they are almost lower semi-continuous (n-lower semi-continuous), which is weaken th...The purpose of this paper is to make a further study on the abstract economy. Here, for the constraint correspondences we assume that they are almost lower semi-continuous (n-lower semi-continuous), which is weaken than that they are lower semi-continuous. Several equilibria existence theorems are proved.展开更多
As a new mathematical theory, Rough sets have been applied to processing imprecise, uncertain and incomplete data. It has been fruitful in finite and non-empty set. Rough sets, however, are only served as the theoreti...As a new mathematical theory, Rough sets have been applied to processing imprecise, uncertain and incomplete data. It has been fruitful in finite and non-empty set. Rough sets, however, are only served as the theoretic tool to discretize the real function. As far as the real function research is concerned, the research to define rough sets in the real function is infrequent. In this paper, we exploit a new method to extend the rough set in normed linear space, in which we establish a rough set,put forward an upper and lower approximation definition, and make a preliminary research on the property of the rough set.A new tool is provided to study the approximation solutions of differential equation and functional variation in normed linear space. This research is significant in that it extends the application of rough sets to a new field.展开更多
文摘Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgment theorem and discernable matrix are obtained, in which case an approach to attribute reduction in ordered information system with fuzzy decision is constructed. As an application of lower approximation reduction, some examples are applied to examine the validity of works obtained in our works..
文摘In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix operator of conjugate series of its Fourier series.
文摘It is well known that most of information systems are based on tolerance relation instead of the classical equivalence relation because of various factors in real-world. To acquire brief decision rules from the information systems, lower approximation reduction is needed. In this paper, the lower approximation reduction is proposed in inconsistent information systems based on tolerance relation. Moreover, the properties are discussed. Furthermore, judgment theorem and discernibility matrix are obtained, from which an approach to lower reductions can be provided in the complicated information systems.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
文摘In this paper lower semicontinuity of the functional I(u)=∫_Ωf(x,u,Δ~ _Hu)dx is investigated for f being a Carathéodory function defined on Hn×R×R^2n and for u∈SBV_H(Ω),where Hn is the Heisenberg group with dimension 2n+1,ΩHn is an open set and Δ~ _Hu denotes the approximate derivative of the absolute continuous part Da_Hu with respect to D_Hu.In addition,a Lusin type approximation theorem for a SBV_H function is proved.
文摘The purpose of this paper is to make a further study on the abstract economy. Here, for the constraint correspondences we assume that they are almost lower semi-continuous (n-lower semi-continuous), which is weaken than that they are lower semi-continuous. Several equilibria existence theorems are proved.
基金NationalNaturalScienceFoundationof China underGrant No .60173054
文摘As a new mathematical theory, Rough sets have been applied to processing imprecise, uncertain and incomplete data. It has been fruitful in finite and non-empty set. Rough sets, however, are only served as the theoretic tool to discretize the real function. As far as the real function research is concerned, the research to define rough sets in the real function is infrequent. In this paper, we exploit a new method to extend the rough set in normed linear space, in which we establish a rough set,put forward an upper and lower approximation definition, and make a preliminary research on the property of the rough set.A new tool is provided to study the approximation solutions of differential equation and functional variation in normed linear space. This research is significant in that it extends the application of rough sets to a new field.