Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new chal...Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new challenger unit possesses identical functionalities, but with higher performances. This work aims to find the optimal number of components which should be replaced by new-type units, under budgetary constraints. In this work, the new challenger unit is characterized by lower energy consumption and the optimization steps are based on genetic algorithm (GA). The result shows the importance of this type of replacement in order to economize energy consumption and to deal with obsolescence.展开更多
We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of ...We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of the thermo-optic effect, increasing the wall-plug efficiency of lasers on silicon, optimizing energy performance of modulators, and enhancing the sensitivity of photodetectors. Major conclusions are(1) Mach–Zehnder interferometer-based devices can achieve athermal performance without any extra energy consumption while microrings do not have an efficient passive athermal solution;(2) while direct bonded III–V-based Si lasers can meet system power requirement for now, hetero-epitaxial grown III–V quantum dot lasers are competitive and may be a better option for the future;(3) resonant modulators, especially coupling modulators, are promising for low-energy consumption operation even when the power to stabilize their operation is included;(4) benefiting from high sensitivity and low cost, Ge/Si avalanche photodiode is the most promising photodetector and can be used to effectively reduce the optical link power budget. These analyses and solutions will contribute to further lowering energy consumption to meet aggressive energy demands in future systems.展开更多
micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smal...micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smaller nanosatellites with higher performance and longer lifecyele. The power consumption of MEMS devices is usually much lower than that of traditional devices, which will greatly reduce the consumption of power. For its small size and simple architecture, MEMS devices can be easily integrated together and achieve redundancy. Launched on April 18, 2004, NS - 1 is a nanosatellite for science exploration and MEMS devices test. A mass of science data and images were acquired during its running. NS - 1 weights less than 25 kg. It consists of several MEMS devices, including one miniature inertial measurement unit(MIMU) , three micro complementary metal oxide semiconductor (CMOS)cameras, one sun sensor, three momentum wheels, and one micro magnetic sensor. By applying micro components based on MEMS technology, NS - 1 has made success in the experiments of integrative design, manufacture, and MEMS devices integration. In this paper, some MEMS devices for nanosatellite and picosatellite are introduced, which have been tested on NS -1 nanosatellite or on the ground.展开更多
Latex as an asphalt modifier has gained popularity in the asphalt industry as it improves the durability of asphalt pavement.However,the elastomeric properties of latex stiffen the asphalt binders,resulting in additio...Latex as an asphalt modifier has gained popularity in the asphalt industry as it improves the durability of asphalt pavement.However,the elastomeric properties of latex stiffen the asphalt binders,resulting in additional energy consumption during the production of asphalt mixtures,which may cause a higher emission of greenhouse gases.This is undesirable for sustainable development and the environment.In this study,the applicability of diluted methanol and water was comparatively evaluated as foaming agents in the production of warm mix asphalt(WMA)mixtures incorporating latex.Diluted methanol was used because it has a lower boiling point and latent heat than water,allowing the asphalt mixture to be produced at a lower temperature and thus consuming less energy.The performance of the foamed asphalt mixture was investigated through service characteristics,mechanical performance,and moisture susceptibility of mixtures.The service characteristics,on the other hand,were measured in a laboratory while preparing and compacting the asphalt mixture,which refers to the amount of energy required during the production and construction stages in the asphalt plant and on the construction site,respectively.The degree of energy required was assessed based on the workability index,coatability index,and the compaction energy index.The mechanical performance of asphalt mixtures was characterized by indirect tensile strength,resilient modulus,and dynamic creep tests.The resistance to moisture damage was evaluated based on the common parameter,indirect tensile strength ratio.The findings revealed that the use of diluted methanol foaming agent helped improve the workability of latex modified asphalt mixtures.The foamed latex-modified WMA demonstrated better performance compared to asphalt mixtures prepared using water as the foaming agent.展开更多
文摘Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new challenger unit possesses identical functionalities, but with higher performances. This work aims to find the optimal number of components which should be replaced by new-type units, under budgetary constraints. In this work, the new challenger unit is characterized by lower energy consumption and the optimization steps are based on genetic algorithm (GA). The result shows the importance of this type of replacement in order to economize energy consumption and to deal with obsolescence.
基金supported by the Major International Cooperation and Exchange Program of the National Natural Science Foundation of China under Grant 61120106012
文摘We review current silicon photonic devices and their performance in connection with energy consumption.Four critical issues are identified to lower energy consumption in devices and systems: reducing the influence of the thermo-optic effect, increasing the wall-plug efficiency of lasers on silicon, optimizing energy performance of modulators, and enhancing the sensitivity of photodetectors. Major conclusions are(1) Mach–Zehnder interferometer-based devices can achieve athermal performance without any extra energy consumption while microrings do not have an efficient passive athermal solution;(2) while direct bonded III–V-based Si lasers can meet system power requirement for now, hetero-epitaxial grown III–V quantum dot lasers are competitive and may be a better option for the future;(3) resonant modulators, especially coupling modulators, are promising for low-energy consumption operation even when the power to stabilize their operation is included;(4) benefiting from high sensitivity and low cost, Ge/Si avalanche photodiode is the most promising photodetector and can be used to effectively reduce the optical link power budget. These analyses and solutions will contribute to further lowering energy consumption to meet aggressive energy demands in future systems.
文摘micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smaller nanosatellites with higher performance and longer lifecyele. The power consumption of MEMS devices is usually much lower than that of traditional devices, which will greatly reduce the consumption of power. For its small size and simple architecture, MEMS devices can be easily integrated together and achieve redundancy. Launched on April 18, 2004, NS - 1 is a nanosatellite for science exploration and MEMS devices test. A mass of science data and images were acquired during its running. NS - 1 weights less than 25 kg. It consists of several MEMS devices, including one miniature inertial measurement unit(MIMU) , three micro complementary metal oxide semiconductor (CMOS)cameras, one sun sensor, three momentum wheels, and one micro magnetic sensor. By applying micro components based on MEMS technology, NS - 1 has made success in the experiments of integrative design, manufacture, and MEMS devices integration. In this paper, some MEMS devices for nanosatellite and picosatellite are introduced, which have been tested on NS -1 nanosatellite or on the ground.
基金The authors express their appreciation to the National Natural Science Foundation of China(NSFC)for providing financial assistance via the Research Fund for the International Young Scientist(Grant No.51750110491)Additionally,acknowledgements are due to Universiti Sains Malaysia for providing financial support via Research University Individual(RUI)Grant 1001.PAWAM.8014140.Authors also would like to recognize supports from Chang'an University,China.Last but not least,special thanks to all technical staff of the Highway Engineering Laboratory,Universiti Sains Malaysia(USM),for their valuable help and support.
文摘Latex as an asphalt modifier has gained popularity in the asphalt industry as it improves the durability of asphalt pavement.However,the elastomeric properties of latex stiffen the asphalt binders,resulting in additional energy consumption during the production of asphalt mixtures,which may cause a higher emission of greenhouse gases.This is undesirable for sustainable development and the environment.In this study,the applicability of diluted methanol and water was comparatively evaluated as foaming agents in the production of warm mix asphalt(WMA)mixtures incorporating latex.Diluted methanol was used because it has a lower boiling point and latent heat than water,allowing the asphalt mixture to be produced at a lower temperature and thus consuming less energy.The performance of the foamed asphalt mixture was investigated through service characteristics,mechanical performance,and moisture susceptibility of mixtures.The service characteristics,on the other hand,were measured in a laboratory while preparing and compacting the asphalt mixture,which refers to the amount of energy required during the production and construction stages in the asphalt plant and on the construction site,respectively.The degree of energy required was assessed based on the workability index,coatability index,and the compaction energy index.The mechanical performance of asphalt mixtures was characterized by indirect tensile strength,resilient modulus,and dynamic creep tests.The resistance to moisture damage was evaluated based on the common parameter,indirect tensile strength ratio.The findings revealed that the use of diluted methanol foaming agent helped improve the workability of latex modified asphalt mixtures.The foamed latex-modified WMA demonstrated better performance compared to asphalt mixtures prepared using water as the foaming agent.