期刊文献+
共找到200篇文章
< 1 2 10 >
每页显示 20 50 100
A Combination of N2 and CO2 Adsorption to Characterize Nanopore Structure of Organic-Rich Lower Silurian Shale in the Upper Yangtze Platform, South China: Implications for Shale Gas Sorption Capacity 被引量:21
1
作者 CHEN Lei JIANG Zhenxue +2 位作者 LIU Keyu GAO Fenglin WANG Pengfei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第4期1380-1394,共15页
The pores in shales are mainly of nanometer-scale, and their pore size distribution is very important for the preservation and exploitation of shale gas. This study focused on the organic-rich Lower Silurian black sha... The pores in shales are mainly of nanometer-scale, and their pore size distribution is very important for the preservation and exploitation of shale gas. This study focused on the organic-rich Lower Silurian black shale from four wells in the Upper Yangtze Platform, and their TOC, mineralogical composition and pore characterization were investigated. Low pressure N2 and CO2 adsorption were conducted at 77.35 K and 273.15 K, respectively, and the pore structures were characterized by modified Brunauer-Emmett-Teller (BET), Dubinin-Radushkevich (DR), t-plot, Barrett- Joyner-Halenda (BJH) and density functional theory (DFT) methods and then the relationship between pore structure and shale gas sorption capacity was discussed. The results indicate that (1) The Lower Silurian shale has high TOC content of 0.92%~96%, high quartz content of 30.6%-69.5%, and high clays content of 24.1%-51.2%. The total specific surface area varies from 7.56 m^2/g to 25.86 m^2/g. Both the total specific surface area and quartz content are positively associated with the TOC content. (2) Shale samples with higher TOC content have more micropores, which results in more complex nanopore structure. Micropore volumes/surface areas and non-micropore surface areas all increase with the increasing TOC content. (3) A combination of N2 and CO2 adsorption provides the most suitable detection range (~0.3-60 nm) and has high reliability and accuracy for nanopore structure characterization. (4) The TOC content is the key factor to control the gas sorption capacity of the Lower Silurian shale in the Upper Yangtze Platform. 展开更多
关键词 shale gas nanopore structure lower silurian shale Upper Yangtze Platform sorption capacity
下载PDF
Source Rock and Cap Rock Controls on the Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation Shale Gas Accumulation in the Sichuan Basin and its Peripheral Areas 被引量:21
2
作者 NIE Haikuan JIN Zhijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第3期1059-1060,共2页
Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has b... Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has been discovered from this interval in Jiaoshiba, Changning and Weiyuan shale gas fields in Sichuan Province. However, there is no significant discovery in other parts of the basin due to the different quality of black shale and the differences of tectonic evolution. Based on the progress of shale gas geological theory and exploration discoveries, as well as the theory of "source rock and cap rock controls on hydrocarbon accumulation", of the Upper Ordovician the main controlling factors Wufeng Formation-Lower Silurian Longmaxi Formation shale gas enrichment in the Sichuan Basin and its peripheral areas were analyzed, and the source rock and cap rock controls on the shale gas were also discussed. The results can provide new insights for the next shale gas exploration in this area. 展开更多
关键词 ROCK lower silurian Longmaxi Formation Shale Gas Accumulation in the Sichuan Basin and its Peripheral Areas Source Rock and Cap Rock Controls on the Upper Ordovician Wufeng Formation
下载PDF
Mineralogy and fracture development characteristics of marine shale-gas reservoirs: A case study of Lower Silurian strata in southeastern margin of Sichuan Basin, China 被引量:3
3
作者 郭岭 姜在兴 郭峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1847-1858,共12页
Mineral contents and fractures of shale from well Yuye-1 and outcrops were examined mainly based on systematic description of the cores and outcrops, and data from experimental analyses. The data enabled us to thoroug... Mineral contents and fractures of shale from well Yuye-1 and outcrops were examined mainly based on systematic description of the cores and outcrops, and data from experimental analyses. The data enabled us to thoroughly explore the mineralogy and developmental features of shale of the Lower Silurian Longmaxi Formation in the study area. The results show that,the Lower Silurian Longmaxi Shale(SLS) in the southeastern margin of Sichuan Basin, China, is primarily characterized by a high content of brittle minerals and a relatively low content of clay minerals. The total content of brittle minerals is approximately 57%,including 27% quartz, 12.2% feldspar, 11.2% carbonate and 2.4% pyrite. The total content of clay minerals reaches 41.6%,composed of illite(23.8%), mixed-layer of illite and smectite(I/S)(10.8%) and chlorite(7.0%). The SLS accommodates the widespread development of various types of fractures, including tectonic fractures, diagenetic fractures, inter-layer fractures and slip fractures. The developmental level of the fracture in the SLS is mainly influenced by faults, lithology, mineral contents and total organic carbon content(TOC) in study area. 展开更多
关键词 shale fracture MINERALOGY gas shale lower silurian margin of Sichuan Basin
下载PDF
Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China 被引量:1
4
作者 SHI Zhensheng DONG Dazhong +2 位作者 WANG Hongyan SUN Shasha WU Jin 《Petroleum Exploration and Development》 2020年第4期888-900,共13页
Based on thin-section,argon-ion polished large-area imaging and nano-CT scanning data,the reservoir characteristics and genetic mechanisms of the Lower Silurian Longmaxi shale layers with different laminae and laminae... Based on thin-section,argon-ion polished large-area imaging and nano-CT scanning data,the reservoir characteristics and genetic mechanisms of the Lower Silurian Longmaxi shale layers with different laminae and laminae combinations in the Sichuan Basin were examined.It is found that the shale has two kinds of laminae,clayey lamina and silty lamina,which are different in single lamina thickness,composition,pore type and structure,plane porosity and pore size distribution.The clayey laminae are about 100μm thick each,over 15%in organic matter content,over 70%in quartz content,and higher in organic pore ratio and plane porosity.They have abundant bedding fractures and organic matter and organic pores connecting with each other to form a network.In contrast,the silty laminae are about 50μm thick each,5%to 15%in organic matter content,over 50%in carbonate content,higher in inorganic pore ratio,undeveloped in bedding fracture,and have organic matter and organic pores disconnected from each other.The formation of mud lamina and silt lamina may be related to the flourish of silicon-rich organisms.The mud lamina is formed during the intermittent period,and silt lamina is formed during the bloom period of silicon-rich organisms.The mud laminae and silt laminae can combine into three types of assemblages:strip-shaped silt,gradating sand-mud and sand-mud thin interlayers.The strip-shaped silt assemblage has the highest porosity and horizontal/vertical permeability ratio,followed by the gradating sand-mud assemblage and sand-mud thin interlayer assemblage.The difference in the content ratio of the mud laminae to silt laminae results in the difference in the horizontal/vertical permeability ratio. 展开更多
关键词 gas-bearing shale lamina reservoir characteristics genetic mechanism lower silurian Longmaxi Formation Sichuan Basin
下载PDF
Basic characteristics of key interfaces in Upper Ordovician Wufeng Formation – Lower Silurian Longmaxi Formation in Sichuan Basin and its periphery,SW China
5
作者 WANG Yuman WANG Hongyan +5 位作者 QIU Zhen SHEN Junjun ZHANG Qin ZHANG Leifu WANG Canhui LI Xinjing 《Petroleum Exploration and Development》 CSCD 2022年第1期37-51,共15页
Based on anatomy of key areas and data points and analysis of typical features of shell layer in Guanyinqiao Member, basic characteristics of key interfaces, mainly bentonite layers, in the Upper Ordovician Wufeng For... Based on anatomy of key areas and data points and analysis of typical features of shell layer in Guanyinqiao Member, basic characteristics of key interfaces, mainly bentonite layers, in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in the Sichuan Basin and its surrounding areas and the relationship between these key interfaces with the deposition of organic-rich shale have been examined systematically. The Wufeng Formation-Longmaxi Formation has four types of marker beds with interface attributes, namely, the characteristic graptolite belt, Guanyinqiao Member shell layer, section with dense bentonite layers, and concretion section, which can be taken as key interfaces for stratigraphic division and correlation of the graptolite shale. The shell layer in Guanyinqiao Member is the most standard key interface in Wufeng Formation-Longmaxi Formation, and can also be regarded as an important indicator for judging the depositional scale of organic-rich shale in key areas. There are 8 dense bentonite sections of two types mainly occurring in 7 graptolite belts in these formations. They have similar interface characteristics with the shell layer in Guanyinqiao Member in thickness and natural gamma response, and belong to tectonic interfaces(i.e., event deposits). They have three kinds of distribution scales: whole region, large part of the region, and local part, and can be the third, fourth and fifth order sequence interfaces, and have a differential control effect on organic-rich shale deposits. The horizon the characteristic graptolite belt occurs first is the isochronous interface, which is not directly related to the deposition of organic-rich shale. Concretions only appear in local areas, and show poor stability in vertical and horizontal directions, and have no obvious relationship with the deposition of the organic-rich shale. 展开更多
关键词 Sichuan Basin Upper Ordovician Wufeng Formation lower silurian Longmaxi Formation Guanyinqiao Member graptolitic belt shell layer BENTONITE CONCRETION organic-rich shale
下载PDF
Formation and Evolution of a Paleosol across the Lower Silurian-Lower Permian Boundary in Zunyi District,Northern Guizhou,China and Its Paleoenvironment and Paleoclimate Implications
6
作者 XIONG Xiaohui XIAO Jiafei +4 位作者 HU Ruizhong WANG Jian WANG Yi WANG Xinsong DENG Qi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期2012-2029,共18页
This paper presents a set of bulk geochemical and mineralogical data from a paleoweathering profile located in Zunyi District, Northern Guizhou, China. It was formed at the top of the Hanjiadian Formation of the Lower... This paper presents a set of bulk geochemical and mineralogical data from a paleoweathering profile located in Zunyi District, Northern Guizhou, China. It was formed at the top of the Hanjiadian Formation of the Lower Silurian. A truncated, argillic, gleyed, kryptic paleospodosol is recognized in the paleoweathering profile. Ratios of immobile elements(Ti/Zr, Ti/Al) and their binary(e.g., Nb vs. Zr/TiO_2 and Th/Sc vs. Zr/Sc), triangular diagrams(La-Th-Sc, Th-ScZr/10, Zr-Cr-Ga) reflect that the Gaojiayan paleosol is the product of in-situ weathering of gray-green silty mudstone of the underlying Hanjiadian Formation. Mass balance calculations indicate K enrichment and Na enrichment in the upper and lower portions of paleosol, respectively. These findings both are the results of transgression, which brings substantial concentrations of such elements as K, Na, and Sr. In particular, K enrichment is achieved by the illitization of kaolinite. The biological processes of terrestrial vascular plants also enhance K concentration, especially at the top of the paleosol. Na enrichment is a consequence of albitization and/or adsorption by clay minerals through cation exchange. The mass distributions and relative mass changes of rare earth elements(REEs) in the studied profile display characteristics of vertical zonation. Three peaks in total REEs content are observed, indicating two paleoclimatic or paleoenvironmental changes. Mineralogical characteristics indicate that the paleoclimate changed first from warm and humid to cold and dry and later, to dry and lightly warmer. The corresponding soil environment varies from weakly acidic to strongly alkaline and later, to weakly acidic. Mass translocation characteristics of REEs and several transition metals suggest that the Gaojiayan paleosol may have undergone top erosion. 展开更多
关键词 PALEOSOL PALEOCLIMATE PALEOENVIRONMENT lower silurian-lower Permian NorthernGuizhou
下载PDF
Developmental characteristics and geological significance of the bentonite in the Upper Ordovician Wufeng – Lower Silurian Longmaxi Formation in eastern Sichuan Basin, SW China 被引量:3
7
作者 WANG Yuman LI Xinjing +4 位作者 WANG Hao JIANG Shan CHEN Bo MA Jie DAI Bing 《Petroleum Exploration and Development》 2019年第4期687-700,共14页
Based on the Qiliao section of the Upper Ordovician Wufeng Formation – Lower Silurian Longmaxi Formation in Shizhu, Chongqing city, the development characteristics of bentonite in eastern Sichuan Basin was examined s... Based on the Qiliao section of the Upper Ordovician Wufeng Formation – Lower Silurian Longmaxi Formation in Shizhu, Chongqing city, the development characteristics of bentonite in eastern Sichuan Basin was examined systematically, and its geological significance and scientific value were analyzed. The main understandings are as follows:(1) Six bentonite dense layers were found in the Qiliao section, mainly occurring in 6 graptolitic belts of the Katian, Rhuddanian and Aeronian. Most of the bentonite dense layers showed obvious increase in clay, peak response of GR curve, and indistinct relationship between volcanic ash and total organic carbon(TOC).(2) The bentonite dense layers of Longmaxi Formation were widely distributed in eastern Sichuan Basin and its periphery, and generally showed GR peak, which can be an important reference interface for dividing the bottom boundary of the Coronograptus cyphus belt and the top boundary of the Rhuddanian in eastern Sichuan Basin and western Hubei province.(3) Taking the bentonite dense layers as the stratification basis of the Rhuddanian and Aeronian, it was determined that the sediment thickness of the Rhuddanian in the eastern Sichuan depression was generally 10–40 m, but only the upper part of the Coronograptus cyphus belt was deposited in the hinderland of Yichang Uplift, and the sedimentary thickness was only 3–7 m.(4) In the hinderland of the Yichang Uplift, at least five and a half graptolitic belts were missing in Wufeng Formation – Rhuddanian, and the deposition time of Rhuddanian was less than 0.4 Ma.(5) The bentonite dense layers were important sedimentary responses to the strong deflection of the Yangtze basin at the turn of the Ordovician–Silurian, which suggested that four tectonic activity periods existed in the eastern Sichuan depression, including the early stage of the depression, the middle-late stage of the depression, the early stage of the foreland flexure and the development stage of the foreland flexure. The high-quality shale was mainly developed from the early stage to the middle-late stage in the depression. 展开更多
关键词 Sichuan Basin Qiliao Section lower silurian Longmaxi Formation BENTONITE Yichang UPLIFT depression behind the UPLIFT organic-rich shale
下载PDF
Quantitative prediction of shale gas sweet spots based on seismic data in Lower Silurian Longmaxi Formation,Weiyuan area,Sichuan Basin,SW China 被引量:2
8
作者 ZENG Qingcai CHEN Sheng +8 位作者 HE Pei YANG Qing GUO Xiaolong CHEN Peng DAI Chunmeng LI Xuan GAI Shaohua DENG Yu HOU Huaxing 《Petroleum Exploration and Development》 2018年第3期422-430,共9页
Sweet spots in the shale reservoirs of the Lower Silurian Longmaxi Formation in Weiyuan 201 Block of Sichuan Basin were predicted quantitatively using seismic data and fuzzy optimization method. First, based on seismi... Sweet spots in the shale reservoirs of the Lower Silurian Longmaxi Formation in Weiyuan 201 Block of Sichuan Basin were predicted quantitatively using seismic data and fuzzy optimization method. First, based on seismic and rock physics analysis, the rock physics characteristics of the reservoirs were determined, and elastic parameters sensitive to shale reservoirs with high gas content were selected. Second, data volumes with high precision of the elastic parameters were obtained from pre-stack simultaneous inversion. The horizontal distribution of key parameters for shale gas evaluation were calculated based on the results of rock physics analysis. Then, the fuzzy evaluation equation was established by fuzzy optimization method with test and logging data of horizontal wells with similar operation conditions. key parameters affecting the productivity of horizontal wells were sorted out and the weights of them in the sweet spots quantitative prediction were worked out by fuzzy optimization to set up a sweet spots evaluation system. Three classes of shale gas reservoirs which including two kinds of sweet spots were predicted with the above procedure, and the sweet spots have been predicted quantitatively by combining the above prediction results with the testing production. The testing results of 7 verification wells proved the reliability of the prediction results. 展开更多
关键词 Sichuan Basin lower silurian Longmaxi Formation shale gas SWEET SPOTS quantitative prediction fuzzy optimization
下载PDF
Conodonts from Lower Silurian Strata of the Subpolar Urals
9
作者 Sokolova Liubov 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期251-251,共1页
The distribution of Lower Silurian conodonts from the sections on the Kozhym River was studied first by S.V. Melnikov.After additional studies of the Upper Ordovician-Lower Silurian strata,Oulodus? aff.nathani, Wallis... The distribution of Lower Silurian conodonts from the sections on the Kozhym River was studied first by S.V. Melnikov.After additional studies of the Upper Ordovician-Lower Silurian strata,Oulodus? aff.nathani, Walliserodus cf.curvatus,Panderodus sp.and Ozarkodina sp.were identified by P.M(a|¨)nnik in the Subpolar Urals.Studies of conodonts from the 展开更多
关键词 CONODONTS lower silurian Subpolar URALS
下载PDF
Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China 被引量:7
10
作者 MA Xinhua XIE Jun +1 位作者 YONG Rui ZHU Yiqing 《Petroleum Exploration and Development》 2020年第5期901-915,共15页
Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakth... Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3. 展开更多
关键词 southern Sichuan Basin lower silurian Longmaxi Formation deeply buried shale gas high production control factors deep water and deep burial shale gas reservoir
下载PDF
Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician–Early Silurian in the Upper Yangtze area, South China 被引量:1
11
作者 ZHANG Xi ZHANG Tingshan +6 位作者 ZHAO Xiaoming ZHU Haihua MIHAI Emilian Popa CHEN Lei YONG Jinjie XIAO Qiang LI Hongjiao 《Petroleum Exploration and Development》 CSCD 2021年第4期850-863,共14页
Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied usin... Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied using cyclostratigraphic and geochemical methods.d13 C and chemical index of alteration(CIA)were used to filter the astronomical orbit parameters recorded in sediments.It is found that the climate change driven by orbital cycle controls the fluctuations of sea level at different scales,obliquity forcing climate changes drive thermohaline circulation(THC)of the ocean,and THC-induced bottom currents transport nutrient-laden water from high latitude regions to the surface water of low-latitude area.Hence,THC is the main dynamic mechanism of organic-carbon supply.The marine productivity indexes of Ba/Al and Ni/Al indicate that volcanic activities had limited effect on marine productivity but had great influences on organic carbon preservation efficiency in late Hirnantian(E4).Paleo-ocean redox environmental indicators Th/U,V/Cr and V/(V+Ni)show that there is a significant correlation between volcanism and oxygen content in Paleo-ocean,so it is inferred that volcanisms controlled the organic carbon preservation efficiency by regulating oxygen content in Paleo-ocean,and the difference in volcanism intensity in different areas is an important factor for the differential preservation efficiency of organic carbon.The organic carbon input driven by orbital cycle and the preservation efficiency affected by volcanisms worked together to control the enrichment of organic carbon in the Middle–Upper Yangtze region. 展开更多
关键词 CYCLOSTRATIGRAPHY organic carbon accumulation geochemical weathering index thermohaline circulation volcanic activity Upper Ordovician Wufeng Formation lower silurian Longmaxi Formation
下载PDF
Hydrocarbon generation and storage mechanisms of deepwater shelf shales of Ordovician Wufeng Formation–Silurian Longmaxi Formation in Sichuan Basin, China 被引量:11
12
作者 GUO Xusheng LI Yuping +5 位作者 BORJIGEN Tenger WANG Qiang YUAN Tao SHEN Baojian MA Zhongliang WEI Fubin 《Petroleum Exploration and Development》 2020年第1期204-213,共10页
As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation– Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental mode... As the hydrocarbon generation and storage mechanisms of high quality shales of Upper Ordovician Wufeng Formation– Lower Silurian Longmaxi Formation remain unclear, based on geological conditions and experimental modelling of shale gas formation, the shale gas generation and accumulation mechanisms as well as their coupling relationships of deep-water shelf shales in Wufeng–Longmaxi Formation of Sichuan Basin were analyzed from petrology, mineralogy, and geochemistry. The high quality shales of Wufeng–Longmaxi Formation in Sichuan Basin are characterized by high thermal evolution, high hydrocarbon generation intensity, good material base, and good roof and floor conditions;the high quality deep-water shelf shale not only has high biogenic silicon content and organic carbon content, but also high porosity coupling. It is concluded that:(1) The shales had good preservation conditions and high retainment of crude oil in the early times, and the shale gas was mainly from cracking of crude oil.(2) The biogenic silicon(opal A) turned into crystal quartz in early times of burial diagenesis, lots of micro-size intergranular pores were produced in the same time;moreover, the biogenic silicon frame had high resistance to compaction, thus it provided the conditions not only for oil charge in the early stage, but also for formation and preservation of nanometer cellular-like pores, and was the key factor enabling the preservation of organic pores.(3) The high quality shale of Wufeng–Longmaxi Formation had high brittleness, strong homogeneity, siliceous intergranular micro-pores and nanometer organic pores, which were conducive to the formation of complicated fissure network connecting the siliceous intergranular nano-pores, and thus high and stable production of shale gas. 展开更多
关键词 hydrocarbon generation and STORAGE mechanism Upper ORDOVICIAN Wufeng FORMATION lower silurian Longmaxi FORMATION deep-water SHELF siliceous shale Sichuan Basin pore preservation
下载PDF
Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk 被引量:4
13
作者 WANG Yuman LI Xinjing +8 位作者 CHEN Bo WU Wei DONG Dazhong ZHANG Jian HAN Jing MA Jie DAI Bing WANG Hao JIANG Shan 《Petroleum Exploration and Development》 2018年第3期402-411,共10页
Based on the drilling data of the Silurian Longmaxi Formation in the Sichuan Basin and periphery, SW China, the Ro lower limits and essential features of the carbonization of organic matter in over-high maturity marin... Based on the drilling data of the Silurian Longmaxi Formation in the Sichuan Basin and periphery, SW China, the Ro lower limits and essential features of the carbonization of organic matter in over-high maturity marine shale were examined using laser Raman, electrical and physical property characterization techniques. Three preliminary conclusions are drawn:(1) The lower limit of Ro for the carbonization of Type I-II1 organic matter in marine shale is 3.5%; when the Ro is less than 3.4%, carbonization of organic matter won't happen in general; when the Ro ranges from 3.4% to 3.5%, non-carbonization and weak carbonization of organic matter may coexist; when the Ro is higher than 3.5%, the carbonization of organic matter is highly likely to take place.(2) Organic-rich shale entering carbonization phase have three basic characteristics: log resistivity curve showing a general "slender neck" with low-ultralow resistance response, Raman spectra showing a higher graphite peak, and poor physical property(with matrix porosity of only less than 1/2 of the normal level).(3) The quality damage of shale reservoir caused by the carbonization of organic matter is almost fatal, which primarily manifests in depletion of hydrocarbon generation capacity, reduction or disappearance of organic pores and intercrystalline pores of clay minerals, and drop of adsorption capacity to natural gas. Therefore, the lower limit of Ro for the carbonization of Type I-II1 organic matter should be regarded as the theoretically impassable red line of shale gas exploration in the ancient marine shale formations. The organic-rich shale with low-ultralow resistance should be evaluated effectively in area selection to exclude the high risk areas caused by the carbonization of organic matter. The target organic-rich shale layers with low-ultralow resistance drilled during exploration and development should be evaluated on carbonization level of organic matter, and the deployment plan should be adjusted according to the evaluation results in time. 展开更多
关键词 lower silurian Longmaxi Formation MARINE SHALE thermal maturity organic matter CARBONIZATION resistivity LOGGING exploration risk
下载PDF
不同构造单元页岩孔隙结构差异及其油气地质意义——以四川盆地泸州地区深层页岩为例 被引量:1
14
作者 唐洪明 刘贤 +5 位作者 陈洋 于魏铭 赵宁 石学文 王猛 廖纪佳 《天然气工业》 EI CAS CSCD 北大核心 2024年第5期16-28,共13页
不同构造单元页岩储层品质、含气性差异明显,构造改造作用对页岩气勘探开发具有控制作用,但关于深层页岩气的构造控制作用机理研究较少,相关认识尚不明确,制约了深层页岩气的勘探开发。为此,通过“岩心—薄片—扫描电镜”多尺度观察、... 不同构造单元页岩储层品质、含气性差异明显,构造改造作用对页岩气勘探开发具有控制作用,但关于深层页岩气的构造控制作用机理研究较少,相关认识尚不明确,制约了深层页岩气的勘探开发。为此,通过“岩心—薄片—扫描电镜”多尺度观察、全岩矿物X射线衍射分析、核磁共振等技术手段,对比分析了四川盆地南部泸州地区不同构造单元上奥陶统五峰组—下志留统龙马溪组深层页岩孔隙结构和储层特征的差异,探讨了不同构造单元页岩孔隙结构差异与储层品质的耦合关系,明确了页岩气产量差异的内在地质原因,落实了构造改造作用下的页岩气勘探开发有利区。研究结果表明:①向斜区页岩主要以有机质孔隙、非构造裂缝为主,孔径大;背斜区页岩孔隙结构被强烈改造,以矿物粒间孔、构造裂缝为主,矿物粒间孔狭长且定向排列,孔径小。②向斜区构造相对稳定,有机质孔隙、矿物粒间孔以及成岩裂缝保存较好,宏孔占比高,储集性能好,含气量和产量高;背斜区页岩储层发育大量构造裂缝与断层,孔隙和成岩裂缝被压实,孔径减小,储集性能变差,含气量和产量低。③距盆缘剥蚀区越远,构造越稳定的单元,保存条件越好,该类构造单元页岩储层越发育,含气量和产量越高,页岩气勘探开发潜力越大。结论认为,构造运动对于压力系统的影响是形成不同构造单元深层页岩孔隙结构特征差异的重要因素,并控制了页岩储层的含气性与产量;向斜区深层保存条件好,远离剥蚀区,为勘探开发的最有利区,该认识可为深层页岩气勘探开发提供技术支撑。 展开更多
关键词 四川盆地 泸州地区 构造单元 上奥陶统五峰组—下志留统龙马溪组 深层页岩 孔隙结构 含气性 构造作用
下载PDF
四川盆地深层页岩气钻井关键技术新进展及发展展望 被引量:2
15
作者 佘朝毅 《天然气工业》 EI CAS CSCD 北大核心 2024年第3期1-9,I0001,共10页
四川盆地页岩气资源丰富,目前深层页岩气已成为该盆地天然气增储上产的重点领域,但随着埋深增加和构造背景变化,地质工程条件将更加复杂,钻井过程中将面临井漏风险高、井下工具高温易失效、水平井轨迹控制难度大等技术难题。为此,在系... 四川盆地页岩气资源丰富,目前深层页岩气已成为该盆地天然气增储上产的重点领域,但随着埋深增加和构造背景变化,地质工程条件将更加复杂,钻井过程中将面临井漏风险高、井下工具高温易失效、水平井轨迹控制难度大等技术难题。为此,在系统分析已完钻井实钻数据的基础上,依据深层页岩气区块地质工程特征,系统梳理了影响安全优快钻井的关键技术难点,形成了以地质工程一体化导向技术、钻井提速技术、防漏治漏与复杂防治技术为主体的深层页岩气安全优快钻井关键技术系列。研究结果表明:(1)以精细地质建模优选地质工程“双甜点”、实时靶体追踪为主的地质工程一体化导向技术,实现了地质目标的精准优选和精确追踪;(2)以“高效PDC钻头选型+个性化优化+大扭矩螺杆”高效破岩技术、“MSE+CCS”参数实时优化技术、油基钻井液地面降温+高温旋转导向技术为主的钻井提速技术,实现了页岩气钻井提速提效;(3)以井壁稳定性评价、裂缝性漏层识别、井漏与复杂防治为主的复杂防治技术,从源头降低了井下漏失和卡钻风险。结论认为:(1)形成的深层页岩气安全优快钻井技术,显著提高了机械钻速和铂金靶体钻遇率,在现场规模化推广应用200余口井,单井平均钻井周期降低42.7%,钻井提速效果显著,有力支撑了深层页岩气效益规模开发;(2)深层页岩气钻井将聚焦“地质工程一体化、水平段一趟钻、防漏治漏及智能钻井决策”等方面的技术攻关。 展开更多
关键词 深层页岩气 下志留统龙马溪组 地质工程一体化 钻井提速 高温旋转导向 钻井周期
下载PDF
Sedimentary environment and organic matter accumulation of Wufeng-Longmaxi shales,southwest Yangtze Plate,China:Insights from geochemical and petrological evidence
16
作者 An-kun Zhao Dong Wang +4 位作者 Qian Zhang Zi-hui Lei Qian Yu Di Zhang Ye-xin Zhou 《China Geology》 CAS CSCD 2024年第4期747-761,共15页
Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for o... Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future. 展开更多
关键词 SHALES Shale gas Sedimentary environment Graptolite Upper Ordovician‒lower silurian Organic matter accumulation Radiolarian Geochemical and petrographic evidence Wufeng-Longmaxi Formation Oil-gas exploration engineering Suboxic environment Sichuan Basin Reduced environment Yangtze Plate
下载PDF
深层富有机质页岩孔隙结构分形特征及其地质意义——以四川盆地威远地区下志留统龙马溪组为例 被引量:2
17
作者 管全中 董大忠 +5 位作者 孙莎莎 胡澜潇 漆麟 李冲达 陈诚 陈鑫 《天然气工业》 EI CAS CSCD 北大核心 2024年第3期108-118,共11页
与中、浅层页岩不同,四川盆地南部地区上奥陶统五峰组—下志留统龙马溪组深层富有机质页岩经历了复杂的成岩作用,发育不同的孔隙结构,影响页岩气的赋存状态。为了探讨深层富有机质页岩的孔隙结构、分形特征及其对页岩气富集的影响,以该... 与中、浅层页岩不同,四川盆地南部地区上奥陶统五峰组—下志留统龙马溪组深层富有机质页岩经历了复杂的成岩作用,发育不同的孔隙结构,影响页岩气的赋存状态。为了探讨深层富有机质页岩的孔隙结构、分形特征及其对页岩气富集的影响,以该盆地南部威远地区龙马溪组页岩为研究对象,综合运用有机碳分析、X射线衍射、高分辨率扫描电镜和低温氮气吸附等测试手段,定量表征研究区深层富有机质页岩储层的基础参数及其孔隙结构特征;并运用FHH分形理论,结合低温氮气吸附实验,计算页岩孔隙分形维数,讨论孔隙结构的影响因素及其地质意义。研究结果表明:(1)研究区龙马溪组深层页岩有机质含量(TOC)高,平均值为2.04%,石英等脆性矿物含量占38.00%~73.00%;(2)龙马溪组深层页岩储层普遍发育墨水瓶状有机孔、狭缝型或平板状无机孔等,BET比表面积介于1.252~28.676 m^(2)/g,BJH孔体积介于0.013 192~0.063 874 cm^(3)/g;(3)深层页岩孔隙分形具有明显的分段性,分形维数D_(2)>D_(1),孔隙结构受页岩组成控制,分形维数受控于比表面积和孔径,且与TOC密切相关;(4) LM1—LM3笔石带沉积的富有机质硅质页岩TOC高、分形维数D_(1)和D_(2)值大,介孔BET比表面积和BJH孔体积最大,既有较多的气体吸附位点赋存吸附气,又有良好的孔隙空间贮存游离气,是深层页岩气富集的“甜点段”。结论认为,综合页岩品质参数和分形维数特征可有效评价页岩气富集的“甜点段”,并对实现深层页岩气的增储上产具有现实的指导意义。 展开更多
关键词 四川盆地 威远地区 下志留统龙马溪组 深层页岩 孔隙结构 分形特征
下载PDF
页岩储层渗吸过程微观孔缝演变特征及影响因素——以四川盆地渝西地区龙马溪组龙一1亚段为例
18
作者 钱计安 蒋裕强 +5 位作者 罗彤彤 杨一骁 付永红 陈维铭 孙超亚 王占磊 《石油实验地质》 CAS CSCD 北大核心 2024年第6期1336-1348,共13页
水力压裂已成为页岩气开采的重要手段,明确渗吸过程页岩储层孔隙、微裂缝的演变特征与影响因素,对指导页岩气井压后增产措施优化具有重要意义。为此,选取四川盆地渝西地区大足区块主力产层龙马溪组龙一1亚段底部黑色页岩为研究对象,开... 水力压裂已成为页岩气开采的重要手段,明确渗吸过程页岩储层孔隙、微裂缝的演变特征与影响因素,对指导页岩气井压后增产措施优化具有重要意义。为此,选取四川盆地渝西地区大足区块主力产层龙马溪组龙一1亚段底部黑色页岩为研究对象,开展渗吸水过程的氩离子抛光场发射扫描电镜(FE-SEM)定点观察实验,明确了渗吸水不同时间页岩储层微观孔缝演变规律。研究表明:①页岩储层渗吸水7 d后,有机质边缘有机孔出现不同程度的减小,而内部孔隙形态、大小基本不变;②粒内溶蚀孔和粒间孔会出现明显的扩溶现象,引起矿物颗粒溶蚀、脱落,增大页岩气泄气面积;③页岩储层渗吸水后不会大量萌生新的微裂缝,仅在原有微裂缝的基础上进行扩展,在吸水14 d后缝宽扩展为原来的5~10倍;④页岩储层面孔率在渗吸水后7 d达到最大值,大于7 d后微裂缝缝宽受黏土矿物持续膨胀影响出现不同程度的减小;⑤页岩储层增孔扩缝强度主要受矿物组成与孔渗性质影响,不稳定矿物与脆性矿物含量越高、粒径越大,增孔现象越明显,越有利于压后页岩气的渗流。 展开更多
关键词 渗吸过程 孔缝演变 页岩储层 龙马溪组 下志留统 渝西地区 四川盆地
下载PDF
川南地区下志留统龙马溪组有机质热演化及其主控因素
19
作者 蒋前前 吴娟 +7 位作者 王恒 匡龙伟 周志鹏 杨雨然 李彦佑 罗超 邓宾 焦堃 《石油与天然气地质》 EI CAS CSCD 北大核心 2024年第5期1321-1336,共16页
为研究川南地区下志留统龙马溪组有机质热演化特征,根据钻井、岩性和温度实验数据,研究了现今地温场特征,利用激光拉曼光谱测定计算了龙马溪组页岩有机质镜质体反射率,以镜质体反射率(R_(o))为约束,用BasinMod盆地数值模拟技术重建了该... 为研究川南地区下志留统龙马溪组有机质热演化特征,根据钻井、岩性和温度实验数据,研究了现今地温场特征,利用激光拉曼光谱测定计算了龙马溪组页岩有机质镜质体反射率,以镜质体反射率(R_(o))为约束,用BasinMod盆地数值模拟技术重建了该区热流史及龙马溪组有机质热演化史。研究结果表明,川南地区龙马溪组储层沥青激光拉曼镜质体反射率(RmcR_(o))为2.7%~3.9%,有机质现均已到过成熟阶段,平面上从威远—泸州—长宁区块成熟度逐渐增加。加里东期大部分有机质尚未进入生烃门限。东吴期—印支期威远北部及渝西北部有机质处于低成熟-成熟阶段,同期长宁—宁西及泸州南部有机质分别进入高成熟和过成熟阶段。燕山期川南龙马溪组有机质普遍达到过成熟阶段。川南地区龙马溪组有机质热演化受古地貌、古埋深、峨眉山玄武岩喷发及构造隆升等地质因素的共同影响,其中古埋深及峨眉山玄武岩喷发是有机质热演化最主要的控制因素。 展开更多
关键词 热演化 有机质 页岩 龙马溪组 下志留统 川南地区
下载PDF
四川盆地天宫堂地区下志留统龙马溪组天然裂缝特征及形成期次
20
作者 李林豪 范存辉 +4 位作者 赵圣贤 刘绍军 徐飞 聂珊 余亚伟 《石油实验地质》 CAS CSCD 北大核心 2024年第3期472-482,共11页
四川盆地西南缘下志留统龙马溪组页岩气储量巨大,裂缝发育特征与形成期次对页岩气富集及产能具有重要影响。以天宫堂地区龙马溪组为研究对象,采用岩心分析、FMI成像测井、岩石声发射实验、裂缝充填物碳氧同位素测试、包裹体均一温度测... 四川盆地西南缘下志留统龙马溪组页岩气储量巨大,裂缝发育特征与形成期次对页岩气富集及产能具有重要影响。以天宫堂地区龙马溪组为研究对象,采用岩心分析、FMI成像测井、岩石声发射实验、裂缝充填物碳氧同位素测试、包裹体均一温度测试和埋藏—热演化史分析等分析技术和综合地质方法,研究页岩中天然裂缝的发育特征和形成时期。结果显示,研究区龙马溪组天然裂缝以构造成因的直立缝与低角度缝共同发育为特征,岩心裂缝具有发育程度高、延伸短、充填程度高等特征。成像测井裂缝倾角比对、岩心裂缝交切关系、裂缝充填物流体包裹体测试及岩石声发射实验等结果表明,天宫堂地区龙马溪组裂缝形成与3期构造运动有关。结合埋藏—热演化史分析可证实:第一期为NW向、NNE向平面剪切缝和NEE向剖面剪切缝,形成于燕山中期—晚期(130~62 Ma),构造应力方位为近SN向(345°±5°),包裹体均一温度为185~206℃;第二期为NE向、NWW向平面剪切缝和NNW向剖面剪切缝,形成于燕山晚期—喜马拉雅中期(62~34 Ma),构造应力方位为EW向(80°±5°),包裹体均一温度为165~184℃;第三期为近SN向、NEE向平面剪切缝和NE向剖面剪切缝,形成于喜马拉雅中期—现今(34 Ma至今),构造应力方位为近NW向(315°±5°),包裹体均一温度为125~162℃。结合地质力学背景,建立了天宫堂地区龙马溪组3期构造裂缝演化模式。 展开更多
关键词 页岩裂缝 裂缝特征 构造期次 龙马溪组 下志留统 四川盆地
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部