An outdoor experiment was set up to investigate the effects of used lubricating oil (5 L/m^2) on Aegiceras corniculatum Blanco. and Avicennia marina (Forsk) Vierh., two salt-excreting mangroves. A. marina was more...An outdoor experiment was set up to investigate the effects of used lubricating oil (5 L/m^2) on Aegiceras corniculatum Blanco. and Avicennia marina (Forsk) Vierh., two salt-excreting mangroves. A. marina was more sensitive to used lubricating oil than A. corniculatum and canopy-oiling resulted in more direct physical damage and stronger lethal effects than base-oiling. When treated with canopy-oiling, half of A. corniculatum plants survived for the whole treatment time (90 d); but, for A. marina, high mortality (83%) resulted from canopy-oiling within 3 weeks and no plants survived for 80 d. Base-oiling had no lethal effects on A. corniculatum plants even at the termination of this experiment, but 83% of A. marina plants died 80 d after treatment. Forty days after canopyoiling, 93% ofA. corniculatum leaves fell and no live leaves remained on A. marina plants. By the end of the experiment, base-oiling treatment resulted in about 45% ofA. corniculatum leaves falling, while all A. mar/na leaves and buds were burned to die. Lubricating oil resulted in physiological damage to A. corniculatum leaves, including decreases in chlorophyll and carotenoid contents, nitrate reductase, peroxidase and superoxide dismutase activities, and increases in malonaldehyde contents. For both species, oil pollution significantly reduced leaf, root, and total biomass, but did not significantly affect stem biomass. Oil pollution resulted in damage to the xylem vessels of fine roots but not to those of mediate roots.展开更多
This study analyzed the pyrolysis mechanism,developed a pyrolysis kinetic model,and determined the corresponding thermodynamic parameters for the removal of calcium from used lubricating oil using sulfurized calcium a...This study analyzed the pyrolysis mechanism,developed a pyrolysis kinetic model,and determined the corresponding thermodynamic parameters for the removal of calcium from used lubricating oil using sulfurized calcium alkyl phenolate(T-115B)as a model compound.The pyrolysis process and products were evaluated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.Visual inspection indicated that the removal of calcium from T-115B depended primarily on the destruction of micelles caused by the pyrolysis of compounds at high temperatures.The pyrolysis characteristics of T-115B at different heating rates were investigated by thermogravimetry and differential thermal analysis,which revealed two distinct pyrolysis phases.Thus,the pyrolysis mechanism can be described by a twostep model.The activation energy and thermodynamic parameters(ΔH,ΔG,andΔS)were determined by applying the Kissinger-Akahira-Sunose,Flynn-Wall-Ozawa,Friedman,and Starink methods;the average activation energies for T-115B pyrolysis obtained using these methods were 115.80,119.84,124.96,and 116.14 kJ/mol,respectively.Further,both stages of the pyrolysis reaction followed Fn mechanisms with n=1.39 in the first stage and n=0.86 in the second stage.This study provides reliable and effective pyrolysis models along with kinetic and thermodynamic parameters to facilitate the largescale industrial application of used lubricating oil.展开更多
基金Project supported by the Program for New Century Excellent Talents in University(NCET)Environment and Conservation Fund of the HKSAR(No.9210007)
文摘An outdoor experiment was set up to investigate the effects of used lubricating oil (5 L/m^2) on Aegiceras corniculatum Blanco. and Avicennia marina (Forsk) Vierh., two salt-excreting mangroves. A. marina was more sensitive to used lubricating oil than A. corniculatum and canopy-oiling resulted in more direct physical damage and stronger lethal effects than base-oiling. When treated with canopy-oiling, half of A. corniculatum plants survived for the whole treatment time (90 d); but, for A. marina, high mortality (83%) resulted from canopy-oiling within 3 weeks and no plants survived for 80 d. Base-oiling had no lethal effects on A. corniculatum plants even at the termination of this experiment, but 83% of A. marina plants died 80 d after treatment. Forty days after canopyoiling, 93% ofA. corniculatum leaves fell and no live leaves remained on A. marina plants. By the end of the experiment, base-oiling treatment resulted in about 45% ofA. corniculatum leaves falling, while all A. mar/na leaves and buds were burned to die. Lubricating oil resulted in physiological damage to A. corniculatum leaves, including decreases in chlorophyll and carotenoid contents, nitrate reductase, peroxidase and superoxide dismutase activities, and increases in malonaldehyde contents. For both species, oil pollution significantly reduced leaf, root, and total biomass, but did not significantly affect stem biomass. Oil pollution resulted in damage to the xylem vessels of fine roots but not to those of mediate roots.
基金We are grateful for the support of the Science and Technology Innovation 2025 Major project of Ningbo[2018B10038]the Chair Professorship Program of Shandong University of Technology[117002]the Natural Science Foundation of Shandong Province[ZR2020MB130].
文摘This study analyzed the pyrolysis mechanism,developed a pyrolysis kinetic model,and determined the corresponding thermodynamic parameters for the removal of calcium from used lubricating oil using sulfurized calcium alkyl phenolate(T-115B)as a model compound.The pyrolysis process and products were evaluated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.Visual inspection indicated that the removal of calcium from T-115B depended primarily on the destruction of micelles caused by the pyrolysis of compounds at high temperatures.The pyrolysis characteristics of T-115B at different heating rates were investigated by thermogravimetry and differential thermal analysis,which revealed two distinct pyrolysis phases.Thus,the pyrolysis mechanism can be described by a twostep model.The activation energy and thermodynamic parameters(ΔH,ΔG,andΔS)were determined by applying the Kissinger-Akahira-Sunose,Flynn-Wall-Ozawa,Friedman,and Starink methods;the average activation energies for T-115B pyrolysis obtained using these methods were 115.80,119.84,124.96,and 116.14 kJ/mol,respectively.Further,both stages of the pyrolysis reaction followed Fn mechanisms with n=1.39 in the first stage and n=0.86 in the second stage.This study provides reliable and effective pyrolysis models along with kinetic and thermodynamic parameters to facilitate the largescale industrial application of used lubricating oil.